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General Introduction 

A number of alternative seismological models, describing the relationship between compaction and 

seismicity, have been prepared.  In 2013, a strain-partitioning seismological model was presented in the 

technical addendum to the winningsplan 2013.  This model is further described in a scientific peer-

reviewed paper titled “A seismological model for earthquakes induced by fluid extraction from a 

subsurface reservoir”, published in the Journal of Geophysical Research.   

As an alternative the new activity rate seismological model was developed.  Like the strain-partitioning 

seismological model, the new activity rate model is based on a statistical analysis of the historical 

earthquake record data of Groningen, in combination with the measured subsidence above the 

Groningen field.  The model uses a Poisson Point Process model to describe the nucleation rate of 

earthquakes in response to reservoir compaction and the Epidemic Type Aftershock Sequence model to 

describe the triggering of additional events. 

The new activity rate seismological model achieves more reliable parameter estimates and therefore 

more precise forecasts than the strain-partitioning model.  The model also provide an improved basis to 

investigate changes in “b-factor” with increasing reservoir depletion and the impact of faults that 

partially offset the reservoir.  The current report describes an extension of the activity rate model.   

Both the strain-partitioning seismological model and the alternative activity rate seismological model 

including the extension of this model have been reviewed by Ian Main, Professor Seismology & Rock 

Physics at the University of Edinburgh.  The innovative elements of the study described in this report will 

also be published in a peer-reviewed journal.  The independent and anonymous experts of the Journal 

of Geophysical Research will provide further assurance.   
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Abstract

A probabilistic model of seismicity induced by fault reactivation
due to reservoir compaction has been developed for short-term fore-
casting of M ≥ 1.5 earthquakes induced by gas production from the
Groningen gas field. This is based on a simple thin-sheet geomechan-
ical model for the uni-axial tensor strain field due to a continuous
distribution of reservoir compaction within the presence of a popula-
tion of pre-existing faults that partially offset the reservoir. The spa-
tial and temporal distribution of observed seismicity is conformable
to this reservoir strain field although only a very small fraction of
the induced strains are accommodated by induced earthquakes. The
fraction of the reservoir strain accommodated by seismicity increases
exponentially with reservoir strain. This is an extension of the earlier
activity rate model (Bourne and Oates, 2014) based on the uni-axial
scalar strain field represented by reservoir compaction in the presence
of a presumed ubiquitous population of mapped and unmapped faults.

As with this earlier activity rate model, aftershocks are included
using the Epidemic Type Aftershock Sequence model. Estimation of
the joint distribution of all model parameter values that describe the
nucleation of independent events and their aftershocks was based on
relative likelihoods given the observed events within the historic reser-
voir strain field. The magnitude of these events are independently dis-
tributed according to a constant b-value whose maximum likelihood
estimate given the observed magnitudes is b = 1. The possibility of a
systematic change in b-value with increasing reservoir deformation was
also assessed but no evidence was found for any significant changes.
Residual differences between the distribution of simulated earthquake
catalogues and the observed event origin times, epicenters and mag-
nitudes show no evidence of any statistically significant bias in the
performance of this seismological model. If this current relationship
between reservoir compaction, reservoir fault geometries and induced
seismicity continues then this extended activity rate model offers a
reliable basis for probabilistic earthquake forecasting at least in the
short term.
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1 Introduction

Gas production from the Groningen field has induced earthquakes up to mag-
nitude 3.6. Probabilistic analysis of the seismic hazard associated with gas
production plans is a key part of updating future gas production plans (e.g.
Bourne et al., 2015). The first requirement of such an analysis is a seismo-
logical model capable of short-term forecasts for the conditional probability
distributions of earthquake numbers, locations, magnitudes and mechanisms
given a gas production plan.

Two types of seismological model have been developed for this purpose,
both based on forecasts of reservoir compaction strains for a given gas pro-
duction plan. The choice to use reservoir strain is motivated by the ob-
served spatial-temporal conformance between reservoir strains inferred from
geodetic measurements of surface displacements and the measured historic
seismicity (Bourne et al., 2014). In contrast, reservoir stress changes due
to reservoir pressure depletion, as measured by reservoir pressure gauges,
exhibit a distinctly different spatial-temporal pattern. This is attributed
to lateral variations in reservoir stiffness associated with reservoir porosity
differences.

The strain partitioning model (Bourne et al., 2014) relates the total seis-
mic moment of a catalogue of induced earthquakes to the summed volumetric
strain of the reservoir. A compaction dependent strain partitioning factor
was introduced into the model to describe the escalating level of seismicity
in relation to steady rates of gas production and reservoir compaction. The
activity rate model (Bourne and Oates, 2014) is conceptually different in
that it describes an inhomogeneous Poisson process for which the number
of induced earthquakes is related to the reservoir compaction. Escalation of
the seismicity is accommodated by an exponential intensity function for the
Poisson process. A second term added to this intensity function describes
the contribution from aftershocks according to the Epidemic Type Aftershock
Sequence (ETAS) model: the free parameters in the intensity function are es-
timated by fitting the model to the current Groningen earthquake catalogue.
Bourne and Oates (2014) showed that the activity rate model gives a better
fit to the Groningen earthquake catalogue to date and that the total seismic
moment of the synthetic catalogues generated by it are also consistent with
the observations. This is attributed to more robust methods for parame-
ter estimation and a more complete description of the process by including
aftershocks.

The reliability of forecasts based on these seismological models depends
on the observed historical relationship between induced reservoir strains and
induced reservoir seismicity remaining valid over the forecast period. Po-
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tential incompleteness of these models will be managed through short-term
forecasting, continuous monitoring of reservoir strains and seismicity, and, if
necessary, revision of these models. In this report a further development of
the Groningen seismicity model is described which includes the effect of strain
localization around pre-existing faults that offset the reservoir. This refine-
ment has been developed within the framework of the activity rate model.
The key element here is the generalization of the model describing reservoir
strains induced by reservoir compaction inferred from geodetic monitoring to
include the localisation of shear strains around mapped fault offsets. Con-
sider an idealized model in which a reservoir transected by a vertical weak
fault with no throw undergoes uniform compaction. On either side of this
fault the uniform reservoir compaction induces no relative displacement of
markers in the reservoir, and therefore there is no induced fault slip. If how-
ever, there is an initial throw on the fault, markers on either side of the fault
will move relative to each other the compaction, although uniform, results in
fault slip and this will increase with increasing initial throw. In the following
sections this simple observation is developed further and generalized theoret-
ically to show how the maximum seismic moment release rate on a fault is
dependent on its throw and how other subsurface topographic features also
act to localize reservoir shear strains induced by reservoir compaction and
hence also the maximum seismic moment release.

The intensity function for the Poisson process in the original version of
the activity rate model (Bourne and Oates, 2014) is expressed in terms of
reservoir compaction. Reservoir compaction is the vertical strain-thickness,
that is, the product of vertically-averaged vertical strain and reservoir thick-
ness. The activity rate model can be generalized by consideration of the full
strain tensor rather than just scalar compaction. In the extended activity
rate model the same form is used for the intensity function but instead of
compaction, or vertical strain-thickness, the strain-thickness corresponding
to the largest eigenvalue of the thin-sheet strain tensor model is used. This
is a function of the compaction and the lateral gradients of vertical displace-
ment which, in the case of negligible lateral gradients, reduces to compaction
as before. Kostrov’s expression for seismic moment release rate due to com-
paction strains can be generalized to give an equivalent expression in terms
of the strain-thickness. Applying the generalized form of the Kostrov expres-
sion to the reservoir compaction, fault throw and sub-surface topography
data from the Groningen field gives a better correspondence with the spa-
tial distribution of the Groningen earthquake locations than can be achieved
with compaction alone.

Using the strain-thickness in the activity rate seismological model is a
natural way of including the effect of mapped faults in the PSHA for the
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Groningen field. Classical approaches to construction of the source model
for PSHA make use of engineering judgment to define source regions around
groups of active faults for which averaged levels of seismicity are assumed. In
the alternative approach developed here, the map of depth to top reservoir
derived from interpretation of the 3D seismic data gives the fault throws
and combined with observations of reservoir compaction allows the reservoir
strain-thickness to be calculated. The PSHA workflow is then developed
based on the strain-thickness to address the question of the extent to which
induced earthquakes occur preferentially on mapped faults without the need
to make choices of how zones of different seismic activity should be defined.

2 Models of compaction-induced fault strain

2.1 A simple discrete-fault strain model

Considering the simple case of uniform uni-axial compaction within a reser-
voir of uniform thickness and infinite lateral extent offset by a vertical fault
of uniform offset as shown in Figure 1. The maximum total seismic moment
per unit strike length of this fault is then simply

Ms = µ

∫
(u1 − u2)dz (1)

where µ is the elastic shear modulus of the medium. This integral is simply
the area between the two displacement profiles located on either side of the

Figure 1: Simple block model of uniform uni-axial compaction within a reser-
voir offset by a vertical fault. Differences between profiles of the vertical
displacement due to uni-axial reservoir compaction on either side of the fault
represent the maximum slip potential for an unlocked vertical fault.

5



fault. Consequently,
Ms = µThε = µTc (2)

where T is the fault offset, h is the reservoir thickness and ε is the uni-
form uni-axial reservoir compaction strain. So, we recognize the maximum
seismic moment per unit strike length scales with the product of reservoir
compaction, c = hε and fault offset.

The slip patch on this fault may not be entirely seismogenic. If, for
instance, portions of the fault juxtapose to the geological top seal undergo
stable sliding then the seismic moment will be restricted to the slip patch
within and below the reservoir. Likewise, the same may also be true for the
formation directly below the reservoir, in which case seismogenic slip will be
restricted to the slip patch within the reservoir. The geometry of these two
restricted cases (Figure 2) means the seismic moment per unit strike length

(a)

(b)

Figure 2: Restricted versions of the simple block model shown in Figure 1. (a)
Only fault slip within the reservoir is seismogenic. (b) Only fault slip within
or below the reservoir is seismogenic. In both cases, the seismic moment
per unit fault length equates to the shaded area between the displacement
profiles on either side of the fault.
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for seismogenic slip within the reservoir is

Ms,1 =

{
µTc(1− T

h
), if T ≤ h

0, if T > h,
(3)

and for seismogenic slip within and below the reservoir

Ms,2 =

{
µTc(1− 1

2
T
h

), if T ≤ h
1
2
µTc, if T > h.

(4)

2.2 A thin-sheet continuum strain model

Let us now consider the general conditions of uni-axial reservoir compaction
where the displacement vector is u = (0, 0, uz). For the thin-sheet reservoir
geometry shown in Figure 3 with its base at elevation zo and its top at
elevation zo + h, the vertical displacement profile depends on elevation as

uz =


hεzz, if z ≥ zo + h

(z − zo)εzz, if zo ≤ z < zo + h

0, if z < zo

(5)

where the vertical strain εzz = ∂uz
∂z

. In general, the reservoir strain, εzz,
the base reservoir elevation, zo and the reservoir thickness, h, will all be
continuous functions of position.

The strain tensor, defined as εij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, which for uni-axial

compaction reduces to

εij =
1

2

 0 0 ∂uz
∂x

0 0 ∂uz
∂y

∂uz
∂x

∂uz
∂y

2∂uz
∂z

 . (6)

Figure 3: General model of uni-axial compaction within a thin-sheet reservoir
geometry.
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The partial derivatives of displacement that contribute to the strain tensor
inside the reservoir follow as

∂uz
∂x

= −εzz
∂zo
∂x

+ (z − zo)
∂εzz
∂x

,

∂uz
∂y

= −εzz
∂zo
∂y

+ (z − zo)
∂εzz
∂y

,

∂uz
∂z

= εzz.

(7)

The vertically averaged strain inside the reservoir is

ε̄ij =
1

h

∫ zo+h

zo

εijdz. (8)

Combing equations (6), (7) and (8) leads to the following expressions for the
non-zero elements of the average strain tensor:

ε̄xz = −εzz
2

(
∂zo
∂x

)
+
h

4

(
∂εzz
∂x

)
,

ε̄yz = −εzz
2

(
∂zo
∂y

)
+
h

4

(
∂εzz
∂y

)
,

ε̄zz = εzz.

(9)

Alternatively, these same expressions may be rewritten as derivatives of the
observable quantities of base reservoir topography, zo, reservoir thickness, c,
and reservoir compaction, c, where c = −hεzz as follows.

ε̄xz = −εzz
2

(
∂zo
∂x

)
− εzz

4

(
∂h

∂x

)
− 1

4

(
∂c

∂x

)
,

ε̄yz = −εzz
2

(
∂zo
∂y

)
− εzz

4

(
∂h

∂y

)
− 1

4

(
∂c

∂y

)
,

ε̄zz = εzz,

(10)

This yields a vertically-averaged strain tensor

ε̄ij =

 0 0 ε̄xz
0 0 ε̄yz
ε̄xz ε̄yz ε̄zz

 . (11)

The eigenvalues of this tensor are

λ1,3 =
ε̄zz
2

(
1±
√

1 + Γ2
)
,

λ2 = 0,
(12)

8



where

Γ2 = 4
ε̄2xz + ε̄2yz
ε̄2zz

. (13)

The corresponding orthogonal eigenvectors are:

n̂1,3 = [ε̄xz, ε̄yz, λ1,3],

n̂2 = [ε̄yz,−ε̄xz, 0].
(14)

In this reference frame, the vertically-averaged principal strain tensor is then
simply

ε̄ij =

λ1 0 0
0 0 0
0 0 λ3

 . (15)

For the trace-free deviatoric strain tensor, i.e. εij − 1
3
δijεkk where δij is

the Kronecker delta, the eigenvalues are then:

λ′1,3 =
ε̄zz
2

(
1

3
±
√

1 + Γ2

)
,

λ′2 = − ε̄zz
3
.

(16)

The corresponding orthogonal eigenvectors are:

n̂1,3 = [ε̄xz, ε̄yz,
ε̄zz
2

(
1±
√

1 + Γ2
)

],

n̂2 = [ε̄yz,−ε̄xz, 0],
(17)

In this reference frame, the vertically-averaged principal deviatoric strain
tensor is then simply

ε̄′ij =

λ′1 0 0
0 λ′2 0
0 0 λ′3

 . (18)

Following Kostrov (1974), the incremental average irrotational seismic
strain, ε̄s, due to a population of earthquakes that occurred within a given
volume and a given time interval is proportional to the sum of their seismic
moment tensors,

ε̄s,ij(t) =
1

2µV

N(t)∑
k=1

Mk
om

k
ij, (19)

where ε̄s,ij is the ijth component of the average seismic strain tensor, N is
the number of events that occurred within the given volume, V , and the
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time interval, t , µ is the shear modulus, Mk
o and mk

ij are the scalar seismic
moment and the unit symmetric moment tensor of the kth event respectively.

Equating the vertically-averaged strain tensor with the maximum total
seismic moment per unit area leads to

1

A

N(t)∑
k=1

Mk
om

k
ij,= 2µhε̄s,ij(t), (20)

where A is the horizontal area occupied by the given volume, V , and ε̄ be-
comes the average strain within this volume. Combining this with the ex-
pression for principal strain tensor given by (18) yields

1

A

N(t)∑
k=1

Mk
om

k
ij,= µhε̄zz

(
1 +
√

1 + Γ2
)1 0 0

0 0 0
0 0 λ3

λ1

 , (21)

Alternatively, if the seismicity only relates to the principal deviatoric strain
tensor, i.e. earthquakes play no part in accommodating the isotropic strain,
then (20) combines with (16) such that

1

A

N(t)∑
k=1

Mk
om

k
ij,= µhε̄zz

(
1

3
+
√

1 + Γ2

)1 0 0

0
λ′2
λ′1

0

0 0
λ′3
λ′1

 , (22)

Now let us consider the special case where lateral gradients in reservoir
thickness and lateral gradients in reservoir compaction are small relative to
the lateral gradients in the elevation of the base reservoir equation (10) may
be approximated as

ε̄xz ≈ −
εzz
2

(
∂zo
∂x

)
,

ε̄yz ≈ −
εzz
2

(
∂zo
∂y

)
,

ε̄zz = εzz.

(23)

In this case, the maximum seismic moments per unit area required to accom-
modate the deviatoric strains are

1

A

N(t)∑
k=1

Mk
om

k
ij = −µc(t)

(
1

3
+
√

1 + |∇(zo)|2
)1 0 0

0
λ′2
λ′1

0

0 0
λ′3
λ′1

 , (24)
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where

|∇(zo)|2 =

(
∂zo
∂x

)2

+

(
∂zo
∂y

)2

. (25)

Let us now compare this with the expression previously obtained from
the simple model for the maximum seismic moment per unit strike length
given by (2). Consider a single vertical fault oriented parallel to the y-axis
such that ∂zo

∂y
= 0. From (24), the maximum seismic moment per unit strike

length is, in the limit that ∆x� T is

Ms ≈ ∆xµc(t)

1

3
+

√
1 +

(
∂zo
∂x

)2
 ,

≈ µc

(
∆x

3
+
√

∆x2 + T 2

)
,

≈ µcT.

(26)

This is exactly the result previously obtained from the simple model.
Furthermore, returning to (24), if lateral gradients in the elevation of the

base reservoir are also negligible this then reduces to

N(t)∑
k=1

Mk
om

k
ij =

4

3
µ∆V (t)

1 0 0
0 −1

2
0

0 0 −1
2

 , (27)

such that ∆V = Ac̄, and c̄ is the average reservoir compaction within the
given volume V . This is recognizable as the relationship previously described
by Bourne et al. (2014) for the maximum seismic moment induced by a bulk
reservoir volume change.

To facilitate a direct connection with the previous activity rate model
based on an exponential trend with reservoir compaction (Bourne and Oates,
2014), we recognize that reservoir compaction is the vertical strain thickness,
i.e. c = ε̄zzh where ε̄zz is the vertically-averaged vertical strain and h is
the reservoir thickness. Similarly, the strain-thickness corresponding to the
largest eigenvalue of the thin-sheet strain tensor model is

ct = c(t)

(
1

3
+
√

1 + |∇(zo)|2
)

(28)

Consequently, the Poisson intensity function that describes the probability
density of earthquake nucleation is unchanged, except that strain thickness,
ct replaces compaction, c, such that

λ(x, t) = β0ċt(1 + β1ct)e
β1ct , (29)
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Finally, we introduce a weighting scheme to allow for systematic testing
of the relative importance of strain localized on mapped faults due to their
offsets versus the distributed strain of the compaction field that may act
on preexisting unmapped faults. This is also necessary because topographic
gradients and fault offset interpretations are subject to some unknown degree
of smoothing due to resolution limited in the seismic image. The weighting
scheme is applied as

ct = c(t)

(
1

3
wc +

√
wc + wt|∇(zo)|2

)
, (30)

where wc = 1−wt. If wc = 1, the weighting scheme reduces the strain thick-
ness to the expression due to reservoir compaction alone, as given by (27).
Alternatively, if wt = 1, the weighting scheme reduces the strain thickness to
the result due to fault offsets alone, as given by (26).
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3 Application to the Groningen field

3.1 Seismicity and subsidence

Surface subsidence observed by optical levelling networks between 1964 and
2013 indicate the region of largest surface subsidence are closely associated
with the region of largest observed seismicity (e.g. Figure 4). The large
fraction of earthquake epicenters preferentially located with the small region
of the field subjected to the largest surface subsidence cannot simply be
coincidence. Clearly, within the Groningen field, seismogenic fault-slip plays
some role in accommodating reservoir strains induced by reservoir pressure
depletion.

Due to the limited number of levelling benchmarks located within the

(a) (b)

Figure 4: (a) Surface subsidence as measured by geodetic surveys acquired in
September 1972 and December 2011. Grey circles denote the survey bench-
marks. These data are interpolated between the survey benchmarks using
a smooth bi-cubic spline inside the field boundary. (b) The same surface
subsidence in relation to the observed earthquake epicentres from 1 April
1995 to 18 January 2015. The area of each circle denotes the magnitude
of the earthquake according to the legend shown. Light grey lines denote
subsidence contours and dark grey lines denote fault traces mapped at the
Top Rotliegendes horizon.
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region of greatest surface subsidence there is some remaining uncertainty
about the exact location of maximum subsidence. Equally, due to the rela-
tively small total number of observed epicenters the exact location of greatest
seismicity is also uncertain. Based on the levelling data, the center of max-
imum subsidence appears to be located 2–5 km to the south of the region
of greatest seismicity (e.g. Figure 4b). This evidence for a possible offset
between the centers of subsidence and seismicity is significant because it im-
plies that a seismological model based only on reservoir compaction may be
incomplete as some additional mechanism, perhaps related to the observed
fault geometries, is required to explain this apparent eccentricity.

InSAR, however, provides alternative independent measurements of sur-
face displacements with significantly greater spatial and temporal sampling,
may yield a slightly different result where the center of subsidence and seis-
micity are essentially co-located (e.g. Figure 5). Further work is ongo-

Figure 5: Contoured values of average InSAR subsidence rate compared to
earthquakes. These subsidence rates are based on combining the average rate
of Envisat ascending and decending line-of-sight displacements. Ascending
track data are from 25-Jun-2006 to 8-Aug-2010. Descending track data are
from 21-Dec-2003 to 5-Sep-2010. AllML ≥ 1.5 earthquakes are shown from 1-
Apr-1995 to 18-Jan-2015. Subsidence rates below northing coordinate 575 km
are not shown due to the influence of another nearby field.
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ing to improve the use of InSAR measurements for constraining reservoir
compaction models in order to further assess the validity of the existing
compaction-based seismological models (Bourne et al., 2014; Bourne and
Oates, 2014).

3.2 Seismicity and reservoir compaction

Surface subsidence observed by optical levelling networks are for the most-
part consistent with a locally constant rate of reservoir compaction with
reservoir pressure depletion (Bierman et al., 2015). Inversion of these levelling
data yields a spatial distribution of time-invariant compressibility thickness
given information about the vertically-averaged reservoir pressure depletion
obtained from matching the dynamic reservoir model for fluid transport to
the observed history of gas production and reservoir pressure depletion. A
reservoir compaction model then follows simply as the product of vertically-
average reservoir pressure depletion time series and the compressibility thick-

(a) (b)

Figure 6: (a) Observed epicenters of ML ≥ 1.5 events from 1 April 1995 to 18
January 2015. The underlying event number density function was estimated
using the Gaussian kernel density method. (b) The same epicenters shown
in relation to reservoir compaction estimated by inversion of the geodetic
levelling data (Bierman et al., 2015). The area of the circles denotes event
magnitude as indicated in the legend.
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ness map.
The relationship between reservoir compaction and surface displacements

is governed by the geomechanical response of the subsurface to reservoir com-
paction. A point source of reservoir volume change causes a surface displace-
ments with a dominant spatial wavelength commensurate with the depth
of the reservoir below the surface. Consequently, the subsurface acts like a
low-pass filter so any image of reservoir compaction obtained from surface
displacement measurements will have a lateral resolution length-scale compa-
rable to the reservoir depth (3 km). Consequently, the resulting compaction
model is spatially smoothed using cross-validation to ensure optimum pre-
dictive power within the limitations of the levelling data (Bierman et al.,
2015).

Figure 6 compares this compaction model with a measure of earthquake
number density. Again, we observed evidence of a small offset between the
center of reservoir compaction and the center of seismicity. Results from
inversion of the InSAR data to further constrain the reservoir compaction
model are expected to reduced uncertainty in this evidence due to the lim-
ited spatial sampling provided by the levelling data. Nonetheless, it already
seems clear that the contours of earthquake number density define a region
that is elongated along the region fault strike (northwest-southeast), whereas
both the levelling and InSAR data suggest the region of greatest reservoir
compaction is elongated perpendicular to the regional fault strike (northeast-
southwest).

Furthermore, there is emerging evidence for two distinct regions of seis-
micity, the main central region (located around 245,595) and a smaller, less
active region (located around 245, 580) separated by a northwest-southeast
oriented zone with limited or no seismicity. This zone contains many fewer
mapped faults than the adjacent seismically active regions. These two ob-
servations seem sufficient motivation to consider further how these fault ge-
ometries might play a role in governing the induced strain field that drives
the induced seismicity.
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(a)

(b)

Figure 7: (a) Maps of interpreted throw measured at the top Rotliegendes
horizon and reservoir thickness measured at each fault location. (b) The
observed frequency distribution of the average reservoir thickness on either
side of faults, the difference in reservoir thickness across faults, fault throws,
and the ratio of fault throws to average reservoir thickness.
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3.3 Distribution of fault throws

The simple block model and the continuum thin-sheet model of strains in-
duced by reservoir compaction in the presence of preexisting vertical faults
indicates the simple shear strains due to the presence of these faults (εxz, εyz)
are equal to the product of reservoir compaction and fault throw. Both of
these properties are reasonably well-known to use from direct observations;
reservoir compaction from inversion of the geodetic data and fault throws
from interpretation of the reflection seismic image.

The largest fault throws are at least 200 m and these are mostly located
along the lateral boundaries of the gas reservoir (Figure 7). As is typical
for geological fault populations, the frequency distribution of fault throws
follows an power-law with many more faults with smaller throws than larger
throws. This distribution also indicates that faults below 25 m throws are
below the detection threshold of the seismic image. Although these smaller
faults are not detected, the power-law distribution suggests they are likely

Figure 8: Reservoir compaction (left) and fault throw to reservoir thick-
ness ratios (right) at the location of each fault mapped at the top of the
Rotliegendes horizon.
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to be present in even greater numbers than the mapped faults.
The presence of any discontinuous changes in reservoir thickness across

faults would imply discontinuous changes in reservoir compaction across these
faults even under conditions of uniform pressure depletion and reservoir com-
pressibility. Any such compaction discontinuities would also be a mechanism
for inducing fault slip outside the reservoir. The observed distribution of
thickness differences is much smaller than the detection threshold of about
25 m, and so on this basis is considered to be insignificant. This suggests
reservoir compaction is likely to be continuous across faults.

Figure 8 shows maps of reservoir compaction at the location of mapped
faults and the fault throw to reservoir thickness ratio to indicate which faults
partially or completely offset the reservoir. As reservoir thickness is smallest
in the south and southeast parts of the reservoir (Figure 7), it follows that
most faults that completely offset the reservoir are located in this region.
Elsewhere, only a few of the largest faults completely offset the reservoir.

3.4 Distribution of topographic gradients

The thin-sheet continuum strain model is formulated in terms of topographic
gradients of the top reservoir horizon. These gradients were estimated using
a finite-difference operator on the top Rotliegendes horizon interpreted from
the seismic image on a 50 by 50 m grid (Figure 9). Results indicate the
largest topographic gradients exactly conform to the mapped fault locations
and yield gradients that are equivalent to the mapped fault throws converted
to an equivalent topographic gradient on a 50 by 50 m grid.

Small differences are apparent between these two maps (Figures 9c and
9d) but these typically related to the smallest fault throws that are close
the the detection threshold of the seismic image. In these places the differ-
ences may be attributed to interpretation choices in the presence of noise.
Nonetheless, as the thin-sheet strain model is most sensitive to larger fault
throws, these differences for the smallest faults throws are not expected to
be influential in the application of this model.
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(a) (b)

(c) (d)

Figure 9: (a) Topography of the top reservoir horizon mapped from the
reflection seismic image. (b, c) Topographic gradients of the top reservoir
horizon computed as finite-differences on a 50 by 50 m grid and shown on
a logarithmic and linear color scales respectively. (d) Topographic gradients
computed from the measured throws of mapped faults on the same 50 by
50 m grid.
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3.5 Application of the simple discrete-fault strain model

The simple block model of maximum seismic moment per unit strike length
(2) predicts that mapped faults with the largest product of reservoir com-
paction and fault throw should be the most seismogenic. Figure 10a shows
the application of this model to the Groningen reservoir where many of the
faults with large values of maximum seismic moment density are located
within the region of larger earthquake number density. There are however
notable exceptions, for instance the large boundary fault located directly to
the southwest of this region is predicted to have one of the largest maximum
seismic moment density of any mapped fault but there is a clear absence of
observed seismicity within the vicinity of this fault. This may be because
the reservoir compaction at this location is over-estimated due to smoothing
or bias within the compaction model obtained from inversion of the levelling
data. Alternatively, the fault may be experiencing predominately aseismic
slip, perhaps because its throw completely offsets the reservoir.

(a) (b)

Figure 10: Maximum seismic moment density computed according to the
discrete-fault block-model for two scenarios: (a) all fault slip is seismogenic,
(b) only fault slip within the reservoir is seismogenic. Grey circle denote the
epicenter of all ML ≥ 1.5 events located between 1 April 1995 and 18 January
2015.
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Considering the alternative simple block model where only fault slip
within the reservoir is seismogenic (3) the resulting maximum seismic mo-
ment density map appears to show improved conformance with the observed
epicenters and notably the maximum seismic moment associated with this
particular boundary fault is reduced to zero. These results from the simple
block model are promising so let us now proceed to the application of the
more-general thin-sheet strain model.

3.6 Application of the thin-sheet strain model

Before proceeding to calibrate the activity rate parameters of the thin-sheet
strain model (β0, β1) to the observed space-time distribution of earthquake
epicenters we should first consider the limitations imposed by the finite sam-
ple size (N = 230) and standard epicenter location errors (500 m). The small
number of observed epicenters means the underlying probability distribution
is sparsely sampled and so may only be reliably estimated subject to some
degree of spatial smoothing. The true probability density distribution may
be highly localized on preexisting faults but our current information lacks the
spatial resolution to demonstrate this. Instead we seek the smoothest distri-
bution consistent with the observed epicenters to avoid the potential for bias
by including additional information not justified by observations. Likewise,
as the standard epicenter location error is similar to the typical spacing of
mapped faults there is an additional limitation to the spatial resolution we
may achieve in the seismological model.

Figure 11: Reservoir strain thickness computed according to the thin sheet
continuum model for wt = 1, and then smoothed using Gaussian filter kernels
with standard deviations (σ) increasing from 250 m to 3000 m. All faults
with throws exceeding the reservoir thickness were excluded from the model.
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(a)

(b)

(c)

Figure 12: (a) Reservoir strain thickness (σ = 500, 1000 m) and epicenters
(1995-2015, Mw ≥ 1.5). (b, c) Activity rate and strain partitioning versus
reservoir strain thickness. Fault throws exceeding reservoir thickness were
excluded.
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(a)

(b)

(c)

Figure 13: As Figure 12, except for σ = 3000 m and 4000 m.
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(a)

(b)

(c)

Figure 14: As Figure 12, except for σ =5000 m and 8000 m.
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Figure 11 shows reservoir strain thickness maps for a range of increas-
ing smoothness computed using a Gaussian filter kernel. This range starts
with a smoothness length-scale, σ that is likely too small (σ = 250m) to
be constrained by the observed earthquakes and ends with a smoothness
length-scale that is likely too large (σ = 5000m) to explain the observed
earthquakes. Variation in the apparent seismic activity rate and strain par-
titioning with reservoir strain thickness show exponential-like trends over a
wide range of smoothing length-scales (Figures 12, 13, 14). These results are
based on the reservoir strain thickness at the observed epicenter. A more
complete assessment should include integrating over the entire strain thick-
ness map weighted by the probability density function for the observed event
location. This additional complexity in the assessment is currently ignored as

(a)

(b)

Figure 15: (a) Computed event density maps based on the thin-sheet strain-
thickness model that has been smoothed using a Gaussian filter kernel with
standard deviations (σ) from 2000 m to 8000 m. In each case, the maximum
likelihood estimates for β0 and β1 were used to computed event density from
the strain-thickness model. (b) Residuals between the observed and com-
puted event densities. Positive residuals, shown in red, mean that the model
over-predicted the local event density, and vice-versa for negative residuals,
shown in blue.
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this would reduce the resolution limit imposed by location errors but not the
resolution limit imposed by the small sample size which will be subsequently
shown to dominate.

For the smallest smoothing length-scale (σ = 500) the evidence for a
coherent trend between activity rate and strain thickness, and between strain
partitioning and strain thickness is weakest. This may be because the strain
thickness model is wrong, or more likely because the epicenter location error
is larger enough and the sample size small enough to obscure any underlying
relationship. For larger smoothing length-scales the exponential-like trends
in activity rate and strain partitioning become much more significant and
robust across the remaining range of σ-values.

For each σ-value, we computed the maximum likelihood estimate for the
activity rate model parameters (β0, β1). The slope of the exponential trend
(β1) governs the degree of localization of seismicity within the region of largest
strain thickness, whereas the intercept (β0) ensures the expected total num-
ber of events matches the observed total number. Based on these maximum
likelihood estimates the activity rate model was used to compute the ex-
pected event density map for each σ-value and the corresponding residuals
(Figure 12) with respect to the observed event density map (Figure 6). The
σ = 2000m results are clearly under-smoothed leading to over-localization of
the computed event density as shown by a central region of over-prediction
(blue residuals) surrounded by a ring of under-prediction (red residuals). In
contrast, the σ = 8000m results are clearly over-smoothed causing under-
prediction (red residuals) of the largest observed event densities and over-
prediction (blue residuals) across the band of little or no observed seismicity
located just to the south and oriented northwest-southeast. Somewhere in
between these extremes is an optimum σ-value that minimizes the residu-
als and maximizes the proportion of the observed variance explained by the
model (PVE). Optimization of PVE based on a systematic grid search of
σ-values between 2 and 8 km yields a global maximum of 0.9 corresponding
to σ = 5 km (Figure 16a). A local maxima also exists at σ =4 km (0.75)
which is related to the bi-modal map distribution of computed event densi-
ties shown in Figure 15 that coalesce somewhere in the interval 4 km < σ <
5 km.

27



(a)

0 1 2 3 4 5 6 7 8
Smoothing kernal, σ   [km]

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
v
a
ri

a
n
ce

 e
x
p
la

in
e
d

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Topographic gradients weight

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f 
v
a
ri

a
n
ce

 e
x
p
la

in
e
d

(c)

Figure 16: (a) Variation in performance of the thin-sheet strain-thickness
model with the smoothing parameter, σ for unit topographic weight. Per-
formance is measured as the fraction of observed variance explained by the
model. This is maximal for σ =5 km (0.9). (b) Variation in model perfor-
mance with the topographic gradient weight for σ = 5 km and rmax = 1.
(c) Variation in model performance with σ and the maximum fault throw to
reservoir thickness ratio rmax indicates optimal values of σ = 5 km, rmax = 1.
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3.7 Estimates of strain thickness model parameters

Three choices are required to uniquely define an instance of the thin-sheet
strain thickness model. First, the σ-value that defines the smoothing length-
scale. Second, the relative weight factor assigned to the topographic gradients
(wt) that defines the fraction of the total earthquake population originating
on mapped faults. Third, the maximum fault throw to reservoir thickness
ratio for faults (rmax included in the thin-sheet strain model. This allows
for testing the possibility that only faults that do not completely offset the
reservoir are seismogenic. A systematic grid search across all permutations
of these parameters revealed little sensitivity to the choice of the topographic
gradient weight with a slight preference for unit weight regardless of the other
two choices (Figure 16b). There is some complexity in the trade-off between
the other two choices (Figure 16c) due to the changing geometries of included
faults and their influence on the smoothing outcomes. However, there is a
clear optimal choice corresponding to σ = 5 km and rmax = 1. Excluding
faults that do not completely offset the reservoir (rmax < 1 noticeably reduces
the proportion of the variance explained. However, faults with slightly larger
ratios (1 < r < 1.5) may be included in the model without significant per-
formance degradation. Based on this evidence we proceed with a thin-sheet
strain model for σ = 5 km, wt = 1, and rmax = 1.

3.8 Estimates of activity rate model parameters

Maximum likelihood estimates, β̂0 and β̂1, and confidence regions based on
relative likelihoods, for the parameter values of the exponential-trend Ac-
tivity Rate (AR) model specified by (29) were obtained using the method
described by Bourne and Oates (2014). These results (Figure 17) indicate
a clear trade-off between the two parameters. This is attributed to the lim-
ited number of observed events and the limited range of observed variation
in reservoir strain thickness. Uncertainty in the exponential exponent, β1,
will particularly influence how this model extrapolates to the larger values
of reservoir strain thickness anticipated in the near future. The largest and
smallest values of β̂1 represent upper and lower bounds respectively for this
epistemic uncertainty. With time, this uncertainty is expected to reduce as
the number of observed events and the range of observed reservoir strain
thickness increases. Monte Carlo simulations of future seismicity take ac-
count of these current uncertainties by sampling the distribution of parame-
ter estimates according to their relative likelihoods.
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Figure 17: Maximum likelihood estimates for the exponential-trend model
parameters yield β̂0 = 5.3×10−9 m−1 and β̂1 = 10.2 m−1. Relative likelihoods
indicate confidence regions surrounding this estimate.

3.9 Estimates of aftershock model parameters

Earthquake populations typically include aftershocks and the same is true
for the Groningen earthquakes (Bourne and Oates, 2014). These aftershocks
are modeled using the Epidemic Type Aftershock Sequence (ETAS) model
(Ogata, 1998, 2011) that comprises a temporal trigger function, a spatial
triggering function, and a magnitude triggering function. The temporal and
spatial triggering functions are represented as inverse power-laws defined by
characteristic values (c, d) and exponents (p, q). The magnitude triggering
function is represented as exponential function defined by a scaler (K) and an
exponent (a). Joint maximum likelihood estimates for the ETAS and AR pa-
rameter values and their confidence regions were obtained using the method
described by Bourne and Oates (2014). The distributions of acceptable so-
lutions given the observed events and the selected reservoir strain thickness
model are summarized in Figure 18.

In the limit that K = 0, the ETAS model generates no aftershocks. The
maximum likelihood estimate is K̂ = 0.1 and the relative likelihood of K = 0
is less than 10−4. This indicates there is significant evidence for aftershocks
in the Groningen earthquake catalogue and simulations of future seismicity
should therefore include these aftershocks. Probabilistic simulations of future
seismicity based on this AR-ETAS model are computed by sampling these
parameter estimate distributions according to their relative likelihoods.
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Figure 18: A selection of slices through the relative likelihood distribution
around the maximum likelihood parameter estimates. White dots denote the
maximum likelihood parameter estimates for β0, β1, K, p, q, d subject to the
constraint c = 3 days and d = 5× 106 m2.
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(a)

(b)

Figure 19: (a) Probability distribution of the total seismic moment of N =
239, ML ≥ 1.5 independent magnitudes sampled from a frequency-magnitude
distribution with b = 1.06 based on 105 simulated catalogues. The modal
value exactly matches the observed total seismic moment of 1.4 × 1015 Nm
for the 239 ML ≥ 1.5 events observed from 1 April 1995 to 18 January 2015.
For reference, the second vertical grey line located to the right of the modal
value denote the median of this distribution which is 1.5 times larger than the
modal value. (b) The joint probability distribution of total seismic moment
and b-value for N = 239 events. The white circle denotes the total seismic
moment and b-value estimated from the observed N = 239, ML ≥ 1.5 events.
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3.10 Estimates of b-value

The maximum likelihood estimate of the b-value that describes the slope of
the frequency-magnitude distribution for all 239 ML ≥ 1.5 observed between
1 April 1995 and 18 January 2015 is b̂ = 0.96 with a 95% confidence interval
of 0.8 < b̂ < 1.1.

Stochastic simulation of N = 239 events independently sampled from the
frequency-magnitude distribution with constant b-value produces a single
realization of the catalogue of event magnitudes. Repeating this simulation
105 times yields a stable estimate for the probability distribution of the total
seismic moment and apparent b-value for these simulated catalogues. The
total seismic moment is a Pareto sum distribution with a heavy right-side tail
(Figure 19a). This means the median value is about 1.5 times larger than the
modal value and confidence interval about the modal value are significantly
skewed extended further above than below the modal value. The constant
b-value selected for these simulations is b = 1.06, which is slightly larger than
the maximum likelihood estimate for reasons that will be discussed shortly.

The apparent b-value for each simulated catalogue does not exactly equal
the asymptotic limit of the parent distribution (b = 1.06) due to the finite
sample size (N = 239), but instead is distributed about this value in a manner
that is negatively correlated with the total seismic moment (Figure 19b) and

(a) (b)

Figure 20: (a) Maximum likelihood estimates of b-value for ML > 1.5 events
between 1 April 1995 and 18 January 2015 within 9× 9 km overlapping box-
shaped regions spaced every 3 km and containing at least 15 events. Grey
circles denote the epicenters of these events. (b) 95% confidence intervals
for these same b-value estimates arranged in ascending order. A dashed line
denotes the maximum likelihood b-value estimated from the entire population
which is consistent with the b-values estimated for most spatial subsets except
for the few most extreme values.
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Figure 21: Maximum likelihood estimates of b-value through time for ML ≥
1.5 events between 1 April 1995 and 18 January 2015. (a) Events within
5 km of the center of seismicity (93 events), (b) Events beyound 5 km from
the center of seismicity (146 events). The center of seismicity is taken to
be located at 245 km east and 596 km north. Vertical error bars denote
the standard 95% confidence interval, grey regions denote the temporal and
spatial bins. The dotted line shows the b-value estimated for the whole
population (b = 0.96).
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varies from below 0.9 to above 1.2. This stochastic variation in the simulated
b-values is similar to the 0.8 to 1.1 confidence interval on the b-value estimated
from the observed magnitudes.

For the modal (maximum likelihood) value of this distribution to match
the observed total seismic moment we note that this requires b = 1.06. This
is slightly above the maximum likelihood estimate for the b-value but within
its 95% confidence interval. One reason for this is that the observed magni-
tudes may not conform to the assumption underlying the maximum likelihood
estimate of independent and identically distributed magnitudes. Previous
analysis showed no current evidence for correlations between the observed
magnitudes, although the event locations and origin times do show correla-
tions. This apparent behavior of clustered epicenters and origin times but
independent magnitudes is also typical of natural earthquake populations
(Felzer and Abercrombie, 2004).

The remaining assumption of identically distributed magnitudes may be
assessed by testing for statistically significant differences in b-value for differ-
ent subsets of the data. The strength of these tests will of course be limited
because of small total number of observed events. Nonetheless, these tests
are important as any emerging evidence for systematic changes in b-value
with location, or time, or reservoir deformation, or some other metrics may
be influential on the assessed seismic hazard or risk.

Estimates of b-values within different spatial subsets (Figure 20) indicate
an apparent spatial trend with the smallest values mostly located in regions
with the larger event densities and therefore smaller confidence bounds. Com-
pared to the b-value for the entire population most of this apparent spatial
trend in b-values is not significant at the 95% confidence level, with the pos-
sible exception of the most extreme b-values.

The possible time-dependence of b-values was assessed in a similar fash-
ion, by computing the maximum likelihood estimate for events within disjoint
time blocks for two distinct spatial domains centered on the area of great-
est seismicity (Figure 21). On this occasion to avoid any possible bias due
to different sample size, each time blocks were selected to ensure an equal
number of events in each block. These results suggest an apparent trend of
decreasing b-values with time. However, there are a few counter-examples of
apparent b-value increasing with time. Moreover, with just one exception,
all these estimates are consistent with a constant b-value estimated from the
whole population (b = 0.96) within their 95% confidence intervals.

To look for any trend in b-values with reservoir deformation which varies
in both space and time, each event was labeled with the value of reservoir
strain thickness at the location of its epicenter at the end of the time period
under consideration (18 January 2015). These events were then sequenced
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according to strain thickness and then divided into disjoint bins with, as
far as possible, equal populations. Figure 22 shows the results where the
arbitrary choice of the number of bins was varied systematically from 1 to
12. The smaller numbers of bins provide too little sampling of any variation
with reservoir strain thickness and the larger numbers of bins provide too
little confidence in the estimated b-values due to the small number of events
within each bin. Somewhere in between there is a balance between these
two limiting effects that suggests a trend of b-value decreasing with reservoir
strain thickness. This trend is apparent in all cases with at least 2 bins,
however we do note that the 95% confidence bounds associated with these
estimates are for the most-part also consistent with a constant b-value.

Overall, the current evidence for any changes of b-values with location,
time, or reservoir deformation is not compelling but equally the evidence does
not support rejecting this possibility. Indeed, there is some existing evidence
for b-values decreasing with increasing differential stress; for instance prior
to the occurrence of larger earthquakes (Tsukakoshi and Shimazaki, 2008;
Nanjo et al., 2012), and also with increasing depth (Mori and Abercrombie,
1997; Spada et al., 2013). To account for both possibilities two scenarios for
the future development of the b-value will be considered. The first scenario
is a constant b-value consistent with the maximum likelihood estimate but
then revised upwards slightly to match the observed cumulative total seis-
mic moment. The second scenario is a b-value that decreases with reservoir
strain thickness according to the hyperbolic function shown in Figure 22. A
hyperbolic function was selected to represent a monotonic transition between
two bounding values such that

b(ct) =

(
b1 + b2

2

)
−
(
b1 − b2

2

)
tanh

(
ct − c0
c1

)
, (31)

where b1, b2 are the initial and final bounds of the b-value, c0 is the value
of reservoir strain thickness at the mid-point of the transition, and c1 is a
parameter governing the length-scale of this transition.

Model parameters were estimated given the observed joint distribution of
N event magnitudes and reservoir strain-thickness values corresponding to
the epicenter and origin time of each event using Bayesian inference. The log-
likelihood function for this model is simply an extension of the log-likelihood
function, `, for a constant b-value (e.g. Aki, 1965; Utsu, 1966; Gibowicz and
Kijko, 1994),

`(b1, b2, c0, c1) =
N∑
i=1

ln b(ct,i)−
N∑
i=1

b(ct,i)(Mi −Mmin + ∆M/2), (32)
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where Mi is the magnitude of the ith event, Mmin is the minimum magnitude
of events considered in the analysis which corresponds to the magnitude of
completeness, and ∆M is the bin size used for reporting magnitudes. In
our case Mmin = 1.5 and ∆M = 0.1. The b-value, b(ct,i) now depends on
reservoir strain thickness according to 31.

Independent uniform prior distributions were assigned to each model pa-
rameter b1, b2, c0, c1. For b1 and b2 these ranged between 0.5 and 1.5 to cover
the range of generally acceptable values. The range for c0 and c1 were set to
[0, 0.6] and [0.01, 0.2] respectively. These were selected to be positive definite
and to cover a broad enough range such that the results were not sensitive
to the choice.

The resulting posterior distributions (Figure 23) indicate a wide spread
of possible b-value trends including a constant b-value, or a b-value that
increases or decreases with increasing reservoir strain. This is unsurprising
given the small number of events available for analysis limit the precision
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Figure 22: Estimation of b-value as a function of reservoir strain thickness.
Vertical error bars denote the standard 95% confidence interval, grey regions
denote the temporal bins. The dashed line denotes an example hyperbolic
tangent function as a possible model for changes in b-value with strain thick-
ness.
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of b-value estimates as previously shown in Figure 22. The maximum a
posterior probability density corresponds to a maximum decrease in b-value
of 0.7 (Figure 23c) from 1.35 to 0.65 (Figure 23d). However, the median b-
value from the marginal distribution for a given strain thickness shows only
a small decrease from 1.0 to 0.95 (Figure 23a), whereas the 95% confidence
interval shows a more pronounce decreasing trend such that b-values as small
as 0.6 are much more likely for the largest values of reservoir strain thickness.
Despite these possibilities of systematic variations in b-value with reservoir
strain thickness, the overall distribution of b-values (Figure 23a) is similar to
that obtained for a constant b-value (Figure 19).

For these reasons, the influence of systematic changes in b-value with
strain on short-term seismicity forecasts maybe modest. This might be be-
cause the true physical process does not cause any such variation or because
the current level of uncertainty due to the small sample size of historic events
mostly masks the true systematic trend in b-value. In order to assess the sen-
sitivity to this model choice, both the constant b-value and the decreasing
b-value models were used for independently simulating historic and future
seismicity.
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Figure 23: Posterior distributions of parameter values for the strain-
dependent b-value model according to (31) given the observed magnitudes
and the reservoir strain thickness at the origin time and epicenter of the
events. (a) The median b-value trend with reservoir strain thickness (black
line) and the 95% confidence region (grey region). (b) Posterior distribution
of b-values for all values of strain thickness. (c) Posterior distribution for the
maximum change in b-value (b2 − b1) with increasing strain thickness. (d)
Joint posterior distribution for b1 and b2.
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Figure 24: Simulation results from the exponential compaction trend Pois-
son process model with aftershocks and the strain-dependent b-value model.
(a) The cumulative number of M ≥ 1.5 events observed through time be-
tween April 1995 and August 2014 as a function of time. (b) As (a) except
for the horizontal distance from the centroid of the observed locations. (c,
d) As (a, b) except for total seismic moment. (e, f) The inter-event times
and distances-squared provide a measure of temporal and spatial clustering
respectively. The simulated results are shown as the median and the 95% con-
fidence interval. These results were obtained from 104 catalogues simulated
according to the exponential compaction trend Poisson model and a standard
random location error of 500 m. Model parameter estimates were sampled
from the relative likelihood distribution shown in Figure 17. In this case the
simulations are based on independent samples from a frequency-magnitude
distribution with a b-value as a function of strain thickness, Mmin = 1.5,
Mmax = 6.5 initially, and a standard magnitude error of 0.2.
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3.11 Stochastic simulation of historic seismicity

Stochastic simulations of earthquake catalogues over the period of observed
seismicity provides a useful opportunity to measure the performance of the
seismological model, to quantify uncertainties, and to identify any further
opportunities for improving the model. Figure 24 shows the results of such
simulations in terms of the cumulative distribution of event numbers and
magnitudes in time and space as well as their temporal and spatial clus-
tering due to aftershocks. In each case the observed seismicity is similar
to the median simulation and within the 95% confidence interval of all the
simulations.

The influence of switching from the strain-dependent b-value model to the
constant b-value model is really quite minor (Figure 25); the key difference
is limited to the upper bound of the total seismic moment increasing at a
slightly greater rate with time for the strain-dependent b-values. This limited
difference is not surprising given the current weakness in the evidence for any
systematic decrease in b-values (Figure 22).

Likewise the observed annual event count and total seismic moments are
consistent with the simulation results (Figure 26). The observed secular
trend of increasing seismicity is matched by the median simulation and the
observed year-to-year variability is matched by the 95% confidence interval
of all the simulations. This 95% confidence interval applies independently
to each individual year, so the number of exceedances over the 20 years of
observation will be binomially distributed. This means there is just a 0.36
chance of no years exceeding the 95% confidence interval, and likewise a
0.64 chance of at least one exceedance and a 0.26 chance of at least two
exceedances. Compared to this, the simulated 95% confidence intervals seem
credible as the annual event numbers and total seismic moments show show
two and zero exceedances respectively.

Figure 27 compares the observed and simulated event density maps in
2015 whilst Figure 29 compares the observed epicenters with the model-based
expected event density for each year of observation. The median simulation
density does exhibit some residuals relative to the observed event density map
(Figure 27). This is mostly characterized by under-prediction (red residuals)
within a northwest-southeast extended region in the vicinity of the greatest
observed event density. This is balanced by over-prediction (blue residuals)
in the nearby flanks to the northeast and particularly to the southwest. How-
ever, the observed event density distribution is almost entirely inside the 95%
confidence interval of the simulated seismicity indicating these residuals are
likely insignificant. This is a significant improvement compared to the ear-
lier activity rate model based on reservoir compaction (Bourne and Oates,
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Figure 25: As for Figure 24, except for the constant b-value model. As
this model is identical to the strain-dependent b-value model in all respects
except for event magnitudes, only the distributions of total seismic moment
are shown.

(a)

(b)

Figure 26: History match and forecast based on 10,000 simulations from
the extended activity rate model with aftershocks and a strain-dependent
b-value given the linear compaction model excluding its uncertainty. (a)
Observed annual event rate compared to simulations. (b) Observed annual
total seismic moment compared to the same simulations. Grey regions denote
the 95% confidence interval of the simulations.
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2014). Nonetheless, the spatial coherence of these residuals does indicate an
opportunity to improve the seismological model, perhaps by updating the
compaction model using all the available levelling, InSAR, and GPS data
or by extending the simple geometric criteria used to identify which faults
are seismogenic. Once the upgraded earthquake monitoring network is op-
erational the expected improvement to detection sensitivity (M ≥ 0.5) and
epicenter location accuracy (±50m) will significantly improve our ability to
identify which faults are most seismogenic within the induced strain field.

Figure 27: Maps of the observed and simulated number density and the
residuals between them. Events densities were computed using the Gaussian
kernel method. Simulation results were obtained using the full probability
distribution of parameter estimates for the exponential compaction trend
activity rates with epidemic type aftershock sequences.
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Figure 28: As Figure 27, except for the previous Activity Rate model based
on reservoir compaction (Bourne and Oates, 2014).
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Figure 29: Observed annual epicenters compared to the activity rate model
expected annual event density maps.
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4 Discussion & Conclusions

To a first approximation the seismicity within the Groningen field is orga-
nized according to the uni-axial scalar strain field (reservoir compaction)
as the induced earthquake population plays its part in accommodating the
induced reservoir strains (Bourne et al., 2014; Bourne and Oates, 2014). Ex-
tending this model to the uni-axial tensor strain field allows for the inclusion
of additional strain mechanisms due to lateral gradients in reservoir thick-
ness, reservoir compaction, and top reservoir topography. In the case of the
Groningen gas reservoir, these first two mechanisms are negligible, and the
last mechanism is primarily controlled by pre-existing faults that partially
offset the reservoir. This thin-sheet strain model of the reservoir provides
a framework for extending the activity rate model of seismicity induced by
reservoir compaction (Bourne and Oates, 2014) to include a role for faults.

Pre-existing faults that offset the reservoir cause a geometric localization
of strain induced by reservoir compaction. Accumulation of strain around
these faults is thought to increase the likelihood of fault slip, although not
all fault slip may be seismogenic, for instance if the fault creeps instead. Pre-
existing faults subject to the largest reservoir compaction and with offsets
that do not exceed the local reservoir thickness were found to be mostly likely
associated with historic seismicity. Fault with larger offsets appear to be
either stable or slipping aseismically. This difference in fault behaviour might
be due to the juxtaposition of different geological formations on either side
of the fault, such as the Rotliegendes sandstone juxtaposed to the Zechstein
salt formation. Another possibility is the smearing or intrusion of ductile
materials, such as clay or anhydrite, along the fault surface during previous
fault slip events, with the quantity, spatial extent and mechanical influence
of this material on the fault increasing with fault offset.

The limited number of observed events and the standard epicentral loca-
tion error (c. 500 m) places a fundamental limit on the observable resolution
of the seismological model. This means, given the currently available infor-
mation, the seismological model is only capable of spatially smooth forecasts
of future seismicity. Optimization of this smoothing parameter indicates a
value of 5 km. This is not necessarily such a fundamental limit on the spatial
resolution of the probabilistic seismic hazard and risk analysis as earthquake
ground motion accelerations are likely correlated on a length-scale compara-
ble to the depth of the reservoir (3 km).

In summary, the extended activity rate model yields simulations of the
historic seismicity that match the observed spatial-temporal distribution of
event occurrences and magnitudes and inter-event clustering within their
stochastic variability without any significant bias. If this past relationship
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between reservoir compaction, reservoir fault geometries and induced seis-
micity continues then the extended activity rate model offers a reliable basis
for probabilistic earthquake forecasting at least in the short term. As gas pro-
duction and induced seismicity continues and more data becomes available
through monitoring the validity of this model should be reassessed and, if
necessary, revised to ensure it continues to offer a reliable basis for short-term
seismicity forecasting.

5 Recommendations for further work

We identify the following opportunities for further improvements to the seis-
mological model:

• Reassess the role of faults within the field of reservoir compaction fol-
lowing updates to the compaction model based on the joint inversion
of all available levelling, InSAR and GPS measurements of surface dis-
placement.

• Investigate the utility of allowing the weight parameter wt to become a
function of geographical position, such as correlated with some measure
of fault density.

• Incorporate uncertainty in the forecast values of reservoir compaction
into the seismological model.

• Investigate statistical mechanics models of failure avalanches such as
fiber bundle models (e.g. Pradhan, 2010) as a physical basis for the
exponential-like increase in activity rates with reservoir compaction,
the power-law distribution of earthquakes, the presence of aftershocks
sequences, and the systematic decreases in b-values with increasing de-
formation.

• Investigate the evidence for possible time-delay or non-linear strain rate
effects on the nucleation rate or the b-value of induced seismicity.

• Extend the seismological model to forecast focal mechanisms and finite
ruptures to test the sensitivity of probabilistic seismic risk assessment
to finite ruptures. Consider how ruptures may extend into the basement
and the potential influence of triggered seismicity.
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