# KEM-11

# Quality control for the publication of offline data by KNMI

October 2022



| Cont                                         | itents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| List of                                      | of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Execut                                       | utive summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Introd                                       | oduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Wavef                                        | eform data completeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.1                                          | 1 Accelerometer waveform data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.2                                          | 2 Borehole data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Metad                                        | adata completeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.1                                          | 1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.2                                          | 2 Accelerometer stations metadata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | 2.2.1 Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | 2.2.2 Instrument response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | 2.2.3 Sensor orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.3                                          | 3 Borehole station metadata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | 2.3.1 Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | 2.3.2 Instrument response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              | 2.3.3 Sensor orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wavef                                        | eform and metadata validity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Wavef</b><br>3.1                          | eform and metadata validity<br>1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>30</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity 1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>30</b><br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1       Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>30</b><br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1 Introduction         2 Accelerometer data         3.2.1 Sensor orientation         Vertical component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>30</b><br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1 Introduction         2 Accelerometer data         3.2.1 Sensor orientation         Vertical component         Horizontal components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>30</b><br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1 Introduction         2 Accelerometer data         3.2.1 Sensor orientation         Vertical component         Horizontal components         3.2.2 Amplitude validity and gain irregularities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>30</b><br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1 Introduction         2 Accelerometer data         3.2.1 Sensor orientation         Vertical component         Horizontal components         3.2.2 Amplitude validity and gain irregularities         3.2.3 Data timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>30</b><br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1 Introduction         2 Accelerometer data         3.2.1 Sensor orientation         Vertical component         Horizontal components         3.2.2 Amplitude validity and gain irregularities         3.2.3 Data timing         3.2.4 Conclusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>30</b><br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Wavef</b><br>3.1<br>3.2<br>3.3            | eform and metadata validity         1 Introduction         2 Accelerometer data         3.2.1 Sensor orientation         Vertical component         Vertical components         3.2.2 Amplitude validity and gain irregularities         3.2.3 Data timing         3.2.4 Conclusion         3 Borehole data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>30</b> 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Wavef</b><br>3.1<br>3.2<br>3.3            | eform and metadata validity         1       Introduction         2       Accelerometer data         3.2.1       Sensor orientation         Vertical component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>30</b> 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         31         32         33         30         31         32         33         30         31         32         33         34         35                                                                         |
| <b>Wavef</b><br>3.1<br>3.2<br>3.3            | <ul> <li>eform and metadata validity</li> <li>1 Introduction</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>30</b> 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         31         30         31         32         33         34         35         36         37         30         31         32         33         345                                                                                   |
| <b>Wavef</b><br>3.1<br>3.2                   | <ul> <li>eform and metadata validity</li> <li>1 Introduction</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>30</b> 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         31         32         33         30         30         31         32         33         340         35         36         37         38         39         31         32 </td |
| <b>Wavef</b><br>3.1<br>3.2                   | <ul> <li>eform and metadata validity</li> <li>1 Introduction</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>30</b> 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         31         30         31         30         31         30         31         30         31         30         31         30         31                                                   |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1       Introduction         2       Accelerometer data         3.2.1       Sensor orientation         Vertical component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>30</b> 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         31         32         33         30         30         31         32         33         345         35         35                                                                        |
| <b>Wavef</b><br>3.1<br>3.2                   | eform and metadata validity         1       Introduction         2       Accelerometer data         3.2.1       Sensor orientation         Vertical component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>30</b> 30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         31         32         33         345         345         345         346         35   |
| Wavefo<br>3.1<br>3.2<br>3.3<br>Public        | eform and metadata validity         1       Introduction         2       Accelerometer data         3.2.1       Sensor orientation         Vertical component          Horizontal components          3.2.2       Amplitude validity and gain irregularities         3.2.3       Data timing         3.2.4       Conclusion         3       Borehole data         3.3.1       Sensor orientation         Yertical components          3.3.1       Sensor orientation         Yertical components          3.3.1       Sensor orientation         Yertical components          Yertical component          Horizontal components          3.3.2       Amplitude validity and gain irregularities         3.3.3       Data timing         3.3.4       Conclusion         Xitting          Xitting          Xitting          Xitting          Xitting          Xitting          Xitting          Xitting | <b>30</b> 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Wavefo<br>3.1<br>3.2<br>3.3<br>Public<br>4.1 | eform and metadata validity         1       Introduction         2       Accelerometer data         3.2.1       Sensor orientation         3.2.1       Sensor orientation         Vertical component          Horizontal components          3.2.2       Amplitude validity and gain irregularities         3.2.3       Data timing         3.2.4       Conclusion         3.3.1       Sensor orientation         Sensor orientation          Vertical component          3.3.1       Sensor orientation         Vertical components              3.3.1       Sensor orientation         Vertical components              3.3.2       Amplitude validity and gain irregularities         3.3.3       Data timing         3.3.4       Conclusion         3.3.4       Conclusion                                                                                                                        | <b>30</b> 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Recom | mendations                                                                       | 70  |
|-------|----------------------------------------------------------------------------------|-----|
| 5.1   | QuakeML - event catalogue                                                        | 70  |
| 5.2   | Publication                                                                      | 70  |
| Appen | dix: Additional figures                                                          | 72  |
| A.1   | Accelerometer waveform plots                                                     | 72  |
| A.2   | Accelerometer orientation results                                                | 73  |
| A.3   | Accelerometer RMS amplitudes per station                                         | 74  |
| A.4   | Accelerometer time flags                                                         | 77  |
| B.1   | Borehole event catalogue                                                         | 82  |
| B.2   | Borehole data availability at all stations and levels                            | 90  |
| B.3   | Borehole station metadata                                                        | 92  |
| B.4   | Borehole orientation                                                             | 96  |
|       | B.4.1 Vertical component                                                         | 96  |
|       | B.4.2 Horizontal components                                                      | 98  |
| B.5   | Borehole overview of malfunctioning components                                   | 112 |
| B.6   | Borehole maximum amplitudes as a function of distance at all stations and levels | 119 |
| B.7   | Borehole RMS amplitudes as a function of time at all stations and levels         | 132 |
|       | B.7.1 Results                                                                    | 133 |
|       | B.7.2 Examples of outliers                                                       | 145 |
|       | B.7.3 Results without outliers                                                   | 147 |
| B.8   | Borehole timing                                                                  | 162 |

# **List of Tables**

| 1.1 | List of events recorded on accelerometers. Depth is expressed in km. Events whose                   |    |
|-----|-----------------------------------------------------------------------------------------------------|----|
|     | ID is coloured in blue are located in the Roswinkel field while those in black are in the           |    |
|     | Groningen field.                                                                                    | 11 |
| 1.2 | Number of events per year recorded on each accelerometer (for comparison with Ta-                   |    |
|     | ble 7 of KNMI report by Dost et al., 2022)                                                          | 15 |
| 1.3 | List of events that occur close in time and may be contained in single files.                       | 19 |
| 2.1 | Accelerometer metadata extracted from StationXML files. Fs is the sampling rate in Hz.              |    |
|     | Station orientations in the North, East, Z (up) coordinate system are specified by azimuth          |    |
|     | and dip angles in degrees. Note that no waveform data are associated with ZAN2.00,                  |    |
|     | ZAN2.01 and ROS5.01                                                                                 | 23 |
| 2.2 | Metadata extracted from the XML file for borehole station <b>ENM</b> . Depth is measured            |    |
|     | from ground level. Fs is the sampling rate in Hz. The station orientations in the North,            |    |
|     | East, Z (up) coordinate system are specified by azimuth and dip angles in $^{\circ}$                | 26 |
| 3.1 | Summary of the accelerometer orientation analysis using an automated approach. $\bar{\theta}$       |    |
|     | is the circular mean of the azimuth angles found for all events at each station while               |    |
|     | $\sigma_{\theta}$ is the circular standard deviation. Subscript N stands for NORSAR results while K |    |
|     | stands for KNMI results (method 1). Subscript $R$ refers to KNMI reported results (first            |    |
|     | two columns of Table 8 in Dost et al., 2022) employing a different formula to compute               |    |
|     | angular mean and standard deviation. Note that KNMI automatically assigned a 30 $^\circ$            |    |
|     | standard deviation to stations for which only a single measurement was available                    | 32 |
| 3.2 | List of files with erroneous amplitudes (red-bordered circles in Fig. 3.7)                          | 38 |
| 3.3 | List of teleseismic earthquakes used to check the borehole instruments' orientation. $\Delta$       |    |
|     | is the epicentral distance expressed in degrees                                                     | 45 |
| 3.4 | Summary of the borehole station orientation analysis. $ar{	heta}$ is the circular mean of the az-   |    |
|     | imuth angles found from all events at each station, while $\sigma_{	heta}$ is the circular standard |    |
|     | deviation. $	heta_{XML}$ denotes angles assigned to the first horizontal component in the sta-      |    |
|     | tion XML files. Cells coloured in orange highlight differences over $30^\circ$ and in red over      |    |
|     | 90°                                                                                                 | 49 |
| A.1 | Individual orientation results. $M_L$ is the event magnitude. $d$ is the event-station distance.    |    |
|     | eta is the back-azimuth. KNMI 1 and KNMI 2 are KNMI's orientation results for methods 1             |    |
|     | and 2, respectively. The offset angle is measured between $max(R\cdot Z)$ and $min( T )$ . The      |    |
|     | last column indicates the particle motion linearity. Cells coloured in blue highlight re-           |    |
|     | cords for which there are large discrepancies between results by NORSAR and KNMI                    |    |
|     | using method 1 results. Red cells highlight records for which the offset angle is impor-            |    |
|     | tant (> 25°)                                                                                        | 73 |
| A.2 | List of accelerometer records available for each event. Start and end record times are              |    |
|     | given as well as time flags. A time flag of 100 indicates a synchronised record while 0             |    |
|     | indicates a non-synchronised record or an unknown state of synchronisation                          | 77 |

| B.1  | List of events recorded on borehole instruments. The last two columns indicate the                    |     |
|------|-------------------------------------------------------------------------------------------------------|-----|
|      | length of the time window to consider before (left) and after (right) the event origin time           |     |
|      | to fully retrieve the waveform data. In the "Stations" column, only triggered stations are            |     |
|      | listed. From 2009 on, the triggered mode was progressively replaced by a continuous                   |     |
|      | mode, i.e. more records than presented in this work may be available for the events                   |     |
|      | occurring in this time period                                                                         | 82  |
| B.2  | Same as Table 2.2 for <b>ENV</b> .                                                                    | 92  |
| B.3  | Same as Table 2.2 for <b>FSW</b>                                                                      | 93  |
| B.4  | Same as Table 2.2 for <b>HWF</b>                                                                      | 93  |
| B.5  | Same as Table 2.2 for <b>OTL</b>                                                                      | 93  |
| B.6  | Same as Table 2.2 for <b>PPB</b>                                                                      | 94  |
| B.7  | Same as Table 2.2 for <b>VBG</b>                                                                      | 94  |
| B.8  | Same as Table 2.2 for <b>VLW</b>                                                                      | 94  |
| B.9  | Same as Table 2.2 for <b>WDB</b> .                                                                    | 95  |
| B.10 | ) Same as Table 2.2 for <b>WMH</b>                                                                    | 95  |
| B.11 | Same as Table 2.2 for <b>ZL2</b>                                                                      | 95  |
| B.12 | 2 Same as Table 2.2 for <b>ZLV</b>                                                                    | 95  |
| B.13 | B Individual borehole sensor orientation results. ID is the event ID (see Tab. B.1). $_{ m L}$ is the |     |
|      | event magnitude. d is the event-station distance. $\theta$ is the orientation angle resulting         |     |
|      | from the semi-automated approach. $\theta_{diff}$ is the difference to the angle stored in the        |     |
|      | station XML file and is coloured when it exceeds 25° (the darker the larger the differ-               |     |
|      | ence). The offset angle is measured between $max(R Z)$ and $min( T )$ . Larger offsets                |     |
|      | (>30°) are coloured (the darker, the larger the difference). The next-two-last column                 |     |
|      | indicates the particle motion linearity. SNR is the signal-to-noise ratio computed on the             |     |
|      | vertical component around the P-wave onset. Linearity and SNR columns are coloured                    |     |
|      | depending on their values (the darker, the smaller). Stations marked with an asterisk                 |     |
|      | are surface sensors that have not been oriented previously. Rows marked by a cross                    |     |
|      | correspond to examples shown in Figs. B.18-B.29                                                       | 98  |
| B.14 | List of 161 borehole records with timing irregularities exceeding one sample. Second                  |     |
|      | and minute flags express the number of samples differing from the theoretical second                  |     |
|      | and minute marks, respectively. The flag on spurious pulses is a boolean indicating                   |     |
|      | whether irregular pulses were detected.                                                               | 162 |



# **Project summary**

Project leader:

5.1.2.e

Project team:

5.1.2.e

Staatstoezicht op de Mijnen contact person:

5.1.2.e

Project period:

01.01.2021-31.10.2022

# **Executive summary**

The advent of induced seismicity in the Dutch gas fields required the development of a seismic network to enhance the seismic monitoring. Until 2010, borehole and accelerometer stations were run in triggered mode and only gradually changed to continuous mode. Until now, the triggered seismic event data were only available on request. Before publishing this data set, both KNMI (Dost et al., 2022) and NORSAR assessed its completeness and quality. Our findings can be summarised as follows:

- 1. Completeness of seismic event waveform data:
  - (a) Apart from one event (see section 3.3.4 for details), both accelerometer and borehole waveform data are complete.
- 2. Metadata:
  - (a) Accelerometer instrument responses and orientation angles are indicated correctly in the StationXML files. However, the orientation uncertainties as well as instrument response units are missing.
  - (b) Apart from few minor elements (see section 3.3.4 for details), the borehole instrument responses and orientation angles are indicated correctly in the StationXML files.
- 3. Waveform data quality:
  - (a) Orientation angles
    - i. Although most of KNMI's results for the orientation of accelerometer components could be confirmed, a few are afflicted with large differences, which result from instabilities in the analysis. These uncertainties are not completely reflected by standard deviations stored in the StationXML files.
    - ii. Both the orientations of vertical and horizontal components of borehole sensors are consistent with the values reported in the StationXML files. The only exceptions are station FSW1, for which components might be switched, as well as station PPB, for which a polarity flip is reported in Dost et al. (2022) between May 1995 and May 1998, but not included in the StationXML file.
  - (b) Amplitudes
    - i. No major issues were found concerning amplitude information of accelerometer records.
    - ii. Amplitudes seem to be mostly recorded correctly despite occasional malfunctioning of sensors and components that have occurred throughout the recording period. Most of our and KNMI's findings overlap, but we detected a peculiar behaviour at station FSW in addition.
  - (c) Timing



- i. Since the correction and adaptation of QuakeML files were not part of the project, the cause of a few mismatches between event catalogue information and waveforms is difficult to assess for the accelerometer data. In addition, there is no information available on synchronicity of the AC-63 records (comprising 25% of the records).
- ii. Only a few significant timing issues were detected in the borehole data, based on the assumption of one-sample accuracy in the DCF signal trace.

Throughout the report, we provide the interested reader with short summary statements (boxes highlighted in dark blue). In addition, we provide specific warnings on potential pitfalls (boxes highlighted in red), discussion items (boxes highlighted in orange), notes (boxes highlighted in grey) and obspy example code snippets (highlighted in light blue) targeted at future users of the data.

9

# Introduction

The seismic network across the Netherlands developed in several stages. The first large induced earthquake in 1986 in Assen ( $M_{L}2.8$ ) triggered the need for a better seismic monitoring of the Netherlands, particularly in the regions in which gas production takes place. Therefore, borehole and accelerometer stations were gradually deployed with the common purpose of complementing the existing network of broadband seismometers. The very first borehole station to be installed was FSW, close to the Groningen field, in 1991. Ten additional borehole stations were established in the period 1995-1998. The setup of accelerometers at the surface started approximately in the same period (10 stations by 1997) and the network was upgraded regularly until 2009 (26 stations). At that time, transferring large amounts of data in real-time was still challenging and constitutes one of the main reasons why operating in triggered mode was preferred. However, from 2010 on, both borehole and accelerometer stations were changed gradually to operate and send data in continuous mode. This replacement process was stretched over several years and was performed slightly later for the accelerometers. The continuous data are publicly available through the KNMI data portal. However, the triggered data were only available on request. For a more detailed description of the KNMI seismic network development over years, we refer the reader to previously published reports and articles on the subject (Dost, 2016; Dost et al., 2017; Dost et al., 2022; NORSAR, 2018).

In the framework of this project, KNMI made those triggered data publicly available. This implies conversion of the data and metadata into suitable formats for download through their web service. Whenever possible, KNMI provides a quality control and assessment of the data. The output of their work was summarised in a report (Dost et al., 2022), which will also be accessible to the public.

NORSAR's role in this project is to ensure that the newly available data and metadata are complete, to review KNMI's quality assurance tests and to perform independent tests. Seismic data quality is of particular importance when it comes to data timing and amplitude measurements. The work was carried out in two phases, firstly on an offline dataset provided to us directly by KNMI and secondly, on the same dataset retrieved through the FDSN web service.

The current report combines findings from both stages and is divided into four parts:

- 1. Waveform data completeness: Which data are included? Are the data correctly written? Is there any missing information?
- 2. Station metadata completeness: Is the metadata on instrument response and sensor orientation complete? Are potential changes over time well described and documented?
- 3. Waveform and metadata validity: How did KNMI quality control data and metadata? What can NORSAR add to their analyses and what are the main conclusions?
- 4. Online data retrieval and recommendations to KNMI.

# Waveform data completeness

In this chapter, we briefly describe the waveform data we received from KNMI before assessing their completeness. We confirmed that the information contained in the miniSEED files is in agreement with the information described in KNMI's report (Dost et al., 2022).

All analyses were carried out using the Obspy python package (Beyreuther et al., 2010), except if specified otherwise.

## 1.1 Accelerometer waveform data

KNMI initially provided us with **81** miniSEED files containing the accelerometer **triggered** waveform data. The report (Dost et al., 2022) states that the analysis was performed for **82** local events occurring both in the Roswinkel and Groningen fields. The miniSEED files were named after the event origin times, hence we were able to retrieve event information itself from the KNMI FDSN web service and summarise the most important parameters in Table 1.1. The spatial distribution of the events is shown in Fig. 1.1.

TABLE 1.1: List of events recorded on accelerometers. Depth is expressed in km. Events whose ID is coloured in blue are located in the Roswinkel field while those in black are in the Groningen field.

| ID |                           | Latitude | Longitude |     | $M_L$ | ID | Origin time             |          | Longitude | Depth |      |
|----|---------------------------|----------|-----------|-----|-------|----|-------------------------|----------|-----------|-------|------|
| 1  | 1996-12-06 16:46:48.000   | 52.83490 | 7.053200  | 1.5 | 1.58  | 42 | 2007-01-26 00:20:09.100 | 53.35183 | 6.755000  | 3.0   | 2.33 |
| 2  | 1996-12-28 18:16:52.900   | 52.83430 | 7.043200  | 2.0 | 2.74  | 43 | 2007-05-14 12:19:24.020 | 53.33117 | 6.701667  | 3.0   | 1.99 |
| 3  | 1997-01-16 00:12:46.600   | 52.83500 | 7.045600  | 2.0 | 2.42  | 44 | 2007-06-09 20:07:33.630 | 53.35300 | 6.746666  | 3.0   | 2.07 |
| 4  | 1997-02-19 21:53:50.700   | 52.83230 | 7.038400  | 2.0 | 3.35  | 45 | 2008-05-18 13:23:46.140 | 53.37533 | 6.728333  | 2.8   | 2.17 |
| 5  | 1997-05-19 15:43:55.200   | 52.83583 | 7.053333  | 2.0 | 1.25  | 46 | 2008-10-30 05:54:29.080 | 53.33667 | 6.720000  | 3.0   | 3.22 |
| 6  | 1997-06-20 00:45:37.700   | 52.83133 | 7.055000  | 2.0 | 1.84  | 47 | 2008-11-07 16:40:01.270 | 53.38083 | 6.735000  | 3.0   | 2.16 |
| 7  | 1997-07-09 06:23:11.300   | 52.83300 | 7.053333  | 2.0 | 1.20  | 48 | 2008-12-15 20:41:17.080 | 53.33600 | 6.600000  | 3.0   | 1.54 |
| 8  | 1997-08-18 04:42:28.770   | 52.83433 | 7.050000  | 2.0 | 1.57  | 49 | 2009-01-01 16:54:46.910 | 53.36633 | 6.771667  | 3.0   | 1.73 |
| 9  | 1997-08-18 $05:17:32.250$ | 52.83417 | 7.050000  | 2.0 | 2.07  | 50 | 2009-01-08 01:17:01.760 | 53.34767 | 6.716667  | 3.0   | 1.66 |
| 10 | 1998-01-28 21:33:02.900   | 52.83267 | 7.041667  | 2.0 | 2.68  | 51 | 2009-01-09 20:16:58.440 | 53.34117 | 6.713333  | 3.0   | 1.88 |
| 11 | 1998-01-28 22:34:03.400   | 52.83317 | 7.036667  | 2.0 | 1.98  | 52 | 2009-02-01 04:23:24.160 | 53.35983 | 6.740000  | 3.0   | 2.23 |
| 12 | 1998-07-14 12:12:02.230   | 52.83250 | 7.053333  | 2.0 | 3.26  | 53 | 2009-04-14 21:05:25.880 | 53.34467 | 6.680000  | 3.0   | 2.62 |
| 13 | 1999-03-12 19:06:42.970   | 52.83280 | 7.051500  | 2.0 | 1.30  | 54 | 2009-05-08 05:23:11.950 | 53.35383 | 6.761667  | 3.0   | 3.00 |
| 14 | 1999-03-17 23:14:25.460   | 52.83200 | 7.051667  | 2.0 | 1.50  | 55 | 2009-07-05 10:42:46.260 | 53.30750 | 6.755000  | 3.0   | 1.79 |
| 15 | 1999-05-06 $18:13:56.320$ | 52.83567 | 7.055000  | 2.0 | 1.42  | 56 | 2009-12-04 04:12:32.140 | 53.28417 | 6.743333  | 3.0   | 2.34 |
| 16 | 1999-05-14 18:30:20.730   | 52.83433 | 7.051667  | 2.0 | 1.70  | 57 | 2010-02-19 23:12:51.580 | 53.28767 | 6.801667  | 3.0   | 1.80 |
| 17 | 1999-05-15 19:28:30.360   | 52.83433 | 7.051667  | 2.0 | 1.38  | 58 | 2010-05-03 09:26:16.070 | 53.38700 | 6.810000  | 3.0   | 2.31 |
| 18 | 1999-12-31 11:00:55.330   | 52.83517 | 7.048333  | 2.0 | 2.80  | 59 | 2010-06-09 19:19:22.460 | 53.18184 | 6.775000  | 3.0   | 2.02 |
| 19 | 2000-01-07 14:19:06.760   | 52.83417 | 7.043334  | 2.0 | 1.10  | 60 | 2010-08-14 07:43:20.250 | 53.40283 | 6.703333  | 3.0   | 2.50 |
| 20 | 2000-03-27 10:23:22.030   | 52.83517 | 7.045000  | 2.0 | 0.80  | 61 | 2010-11-15 11:42:45.950 | 53.34783 | 6.703333  | 3.0   | 1.40 |
| 21 | 2000-10-25 18:10:34.790   | 52.83183 | 7.051667  | 2.3 | 3.20  | 62 | 2011-01-19 19:39:31.660 | 53.31867 | 6.645000  | 3.0   | 2.43 |
| 22 | 2001-04-28 23:00:15.880   | 52.83317 | 7.053333  | 2.0 | 2.36  | 63 | 2011-03-26 20:45:54.340 | 53.33484 | 6.731667  | 3.0   | 1.50 |
| 23 | 2002-02-14 17:01:04.740   | 52.83150 | 7.035000  | 2.0 | 2.07  | 64 | 2011-05-12 16:44:29.830 | 53.19533 | 6.756667  | 3.0   | 1.79 |
| 24 | 2002-10-14 23:45:22.510   | 52.83400 | 7.045000  | 2.0 | 0.94  | 65 | 2011-06-23 09:14:46.290 | 53.32100 | 6.775000  | 3.0   | 1.71 |
| 25 | 2002-12-24 02:57:22.580   | 52.83250 | 7.041667  | 2.0 | 1.43  | 66 | 2011-06-27 15:48:09.710 | 53.30283 | 6.786667  | 3.0   | 3.23 |
| 26 | 2003-03-03 20:51:21.890   | 53.36033 | 6.661667  | 3.0 | 2.17  | 67 | 2011-07-29 22:48:33.630 | 53.33650 | 6.728333  | 3.0   | 1.82 |
| 27 | 2003-09-27 13:57:54.150   | 53.34783 | 6.696667  | 3.0 | 2.71  | 68 | 2011-08-31 06:23:57.160 | 53.44400 | 6.686666  | 3.0   | 2.54 |
| 28 | 2003-10-11 11:44:08.340   | 52.83533 | 7.055000  | 2.0 | 1.61  | 69 | 2011-09-06 21:48:10.980 | 53.33750 | 6.805000  | 3.0   | 2.54 |
| 29 | 2003-11-10 00:22:38.030   | 53.32533 | 6.690000  | 3.0 | 2.99  | 70 | 2011-09-25 12:59:01.280 | 53.36333 | 6.728333  | 3.0   | 1.96 |
| 30 | 2003-11-16 20:04:11.480   | 53.34367 | 6.701667  | 3.0 | 2.67  | 71 | 2011-12-30 06:20:12.690 | 53.35250 | 6.656667  | 3.0   | 2.17 |
| 31 | 2004-09-06 20:31:20.280   | 52.83400 | 7.048333  | 2.0 | 1.00  | 72 | 2012-05-24 15:52:39.810 | 53.35900 | 6.670000  | 3.0   | 1.49 |
| 32 | 2006-01-18 08:12:46.650   | 53.29033 | 6.765000  | 3.0 | 1.49  | 73 | 2012-08-15 19:17:36.490 | 53.35300 | 6.805000  | 3.0   | 2.44 |
| 33 | 2006-02-12 14:36:38.630   | 53.29683 | 6.795000  | 3.0 | 1.48  | 74 | 2012-08-16 20:30:33.280 | 53.34533 | 6.671667  | 3.0   | 3.60 |
| 34 | 2006-03-21 14:50:33.700   | 53.30200 | 6.755000  | 3.0 | 2.37  | 75 | 2013-01-19 20:10:06.480 | 53.28483 | 6.790000  | 3.0   | 2.40 |
| 35 | 2006-03-23 03:12:23.910   | 53.28350 | 6.778333  | 3.0 | 2.24  | 76 | 2013-02-07 22:31:58.380 | 53.37533 | 6.666667  | 3.0   | 2.68 |
| 36 | 2006-03-25 13:54:38.140   | 52.83417 | 7.045000  | 2.0 | 2.10  | 77 | 2013-02-07 23:19:08.970 | 53.38917 | 6.666667  | 3.0   | 3.23 |
| 37 | 2006-03-25 13:55:51.170   | 52.83383 | 7.043334  | 2.0 | 1.70  | 78 | 2013-02-09 05:26:10.050 | 53.36633 | 6.758333  | 3.0   | 2.69 |
| 38 | 2006-08-08 05:04:00.050   | 53.35033 | 6.696667  | 3.0 | 3.47  | 79 | 2013-07-02 23:03:55.500 | 53.29350 | 6.785000  | 3.0   | 3.03 |
| 39 | 2006-08-08 09:49:23.380   | 53.34950 | 6.706666  | 3.0 | 2.53  | 80 | 2013-09-04 01:33:32.170 | 53.34400 | 6.771667  | 3.0   | 2.77 |
| 40 | 2006-08-26 22:41:18.560   | 53.34317 | 6.711667  | 3.0 | 2.31  | 81 | 2013-10-02 20:24:26.870 | 53.31683 | 6.791667  | 3.0   | 1.90 |
| 41 | 2006-10-23 13:38:05.840   | 53.37233 | 6.738333  | 3.0 | 2.27  | 82 | 2014-02-13 02:13:14.320 | 53.35683 | 6.781667  | 3.0   | 3.01 |



FIGURE 1.1: Maps showing the locations of KNMI accelerometers (black crosses) and available events (blue symbols) within (a) the Netherlands and (b) the Groningen field and surroundings. Note that we distinguish between accelerometers for which event data are available (bold crosses) or unavailable (thin crosses). The latter were not part of this review. The red arrow in (a) indicates the location of the Roswinkel field, where 5 stations were installed.

Note that the difference between the number of files and the number of events (81 vs. 82) is due to the fact that two events (#36 and #37, both occurring on 2006-03-25) were contained in the same file. To ease our work, we split them into two separate files. In addition, please note that since Roswinkel and Groningen fields are at some distance from each other, events in Roswinkel are typically only recorded by ROS\* stations. For clarification, we coloured the events in **lighter blue** for Roswinkel and **black** for Groningen.

The histogram in Figure 1.2 shows the distribution of events over years. The numbers on top of each column correspond to the second column of Table 7 in KNMI's report (Dost et al., 2022).



FIGURE 1.2: Histogram of the number of events per year recorded by one or several accelerometers (to be compared with the second column of Table 7 of KNMI's report by Dost et al., 2022).

Similarly, we confirmed that the content of the miniSEED files was in agreement with the report. For that purpose, we summarised the number of records at each station for each year in Table 1.2. This table is directly comparable with Table 7 in KNMI's report (Dost et al., 2022). Figure 1.3 represents the same information visually, providing more details with each cross representing a record for a given event at a given station. Note that the location flag (00, 01, etc.) was also considered, resulting in some stations appearing multiple times. Finally, the grey rectangles in the background show the time periods for which the stations (at a given location) were active. Note that all data are three-component (3C) and labelling was consistent throughout all the files.

All waveform data were recorded with a 200 Hz sampling rate. However, as illustrated in Fig. 1.4, the length of records varies. Although most records last approximately 15 s, in practice, there are 157 different record lengths for a total of 191 records.



FIGURE 1.3: Overview of accelerometer triggered data. Grey rectangles represent the time span, in which stations were operational. Crosses symbolise events for which waveform data are available (blue: events outside of the Groningen field; black: within the field). The histogram on the right summarises the number of events recorded at each station (cp. to Dost et al., 2022). Note that we distinguished records by their full location, i.e. stations MID3, ROS1, ROS5 and ZAN2 have multiple entries.





| <b>N</b> RSAR |
|---------------|
| Offline-data  |
| quality       |
| review        |

October 2022

| TABLE 1.2: Number of events per year recorded on each accelerometer | (for comparison with Table 7 of KNMI report by Dost et al., 2022). |
|---------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                     |                                                                    |

| Year  | FRB2 | GARST | HKS | KANT | MID1 | MID3 | STDM | WIN | WSE | ZAN1 | ZAN2 | ROS1 | ROS2 | ROS3 | ROS4 | ROS5 | ROS6 |
|-------|------|-------|-----|------|------|------|------|-----|-----|------|------|------|------|------|------|------|------|
| 1996  |      |       |     |      |      |      |      |     |     |      |      | 2    |      |      |      |      |      |
| 1997  |      |       |     |      |      |      |      |     |     |      |      | 6    | 2    | 5    |      |      |      |
| 1998  |      |       |     |      |      |      |      |     |     |      |      | 3    | 3    | 2    |      |      |      |
| 1999  |      |       |     |      |      |      |      |     |     |      |      | 6    | 5    | 4    | 1    |      |      |
| 2000  |      |       |     |      |      |      |      |     |     |      |      | 1    | 3    | 1    | 1    | 1    |      |
| 2001  |      |       |     |      |      |      |      |     |     |      |      | 1    | 1    |      | 1    | 1    | 1    |
| 2002  |      |       |     |      |      |      |      |     |     |      |      | 1    | 3    |      |      | 1    | 2    |
| 2003  |      |       |     |      | 1    | 4    |      |     |     |      | 2    | 1    | 1    |      |      |      |      |
| 2004  |      |       |     |      |      |      |      |     |     |      |      | 1    | 1    |      |      |      | 1    |
| 2005  |      |       |     |      |      |      |      |     |     |      |      |      |      |      |      |      |      |
| 2006  |      |       | 5   |      |      | 2    |      |     | 1   | 1    | 3    | 2    | 2    |      | 1    |      | 2    |
| 2007  |      |       |     |      |      |      |      |     | 2   |      | 2    |      |      |      |      |      |      |
| 2008  |      |       |     |      | 2    | 1    |      | 1   | 1   | 1    | 3    |      |      |      |      |      |      |
| 2009  |      |       | 1   |      | 2    | 1    |      | 3   | 6   | 3    | 3    |      |      |      |      |      |      |
| 2010  | 1    | 1     | 1   | 1    | 1    |      |      |     | 2   | 1    | 1    |      |      |      |      |      |      |
| 2011  | 1    | 3     | 1   | 1    | 3    | 2    | 1    | 2   | 9   | 1    | 2    |      |      |      |      |      |      |
| 2012  | 1    | 3     | 1   | 1    | 2    |      | 1    | 2   | 2   |      |      |      |      |      |      |      |      |
| 2013  |      | 4     | 2   | 2    |      |      |      | 4   | 4   | 2    |      |      |      |      |      |      |      |
| 2014  |      | 1     | 1   | 1    |      |      |      | 1   |     |      |      |      |      |      |      |      |      |
| Total | 3    | 12    | 12  | 6    | 11   | 10   | 2    | 13  | 27  | 9    | 16   | 24   | 21   | 12   | 4    | 3    | 6    |

Finally, although it is difficult to assess the data completeness for triggered data, we represent the number of available stations in Figure 1.5 together with the number of stations that recorded the event. Please note that for Roswinkel, only ROS\* stations were considered, whereas for Groningen, all



FIGURE 1.5: Histogram showing the number of operating stations (light grey) and the number of triggered stations, i.e. recording waveform data (dark blue) for each event. Events occurring in the Roswinkel field are marked by blue stars.

stations except ROS\* were considered. This figure shows that in many cases, data are available only at a single station and the number of records rarely exceeds half of the number of operational stations (at least for the events occurring within the Groningen field). Of course, there is a strong relation between the number of stations that recorded the events and the event magnitudes, as illustrated in Figure 1.6.

### Summary

## Accelerometer waveform data are complete.

The content of the accelerometer waveform data can be summarised as follows. We ver-

ified that the information contained in the miniSEED files is correct in terms of trace ID (Network.StationName.LocationFlag.Channel), with respect to the events' origin times and the periods of operation of each station. No metadata are missing (records are always available for all three components and are correctly labelled, the sampling rate is always given and consistent). Note that of the 31 accelerometers listed in Table 5 of KNMI's report (Dost et al., 2022), data were available only for 18 stations, because the others were placed farther away from the Groningen field and were not triggered by low magnitude events (see Fig. 1.1a).

# 1.2 Borehole data

KNMI initially provided us with **584** miniSEED files containing the borehole **triggered** waveform data of **596** local events. The miniSEED files were named after the event origin times, hence we were able to retrieve the relevant event information from the KNMI FDSN web service and plot their locations on the maps in Fig. 1.8. Most events are located within or close to the Groningen field (Fig. 1.8b). Events are listed in Table B.1 in the appendix (p. 82).



FIGURE 1.6: Percentage of stations recording waveforms for a certain event versus event magnitude (blue crosses: events outside the Groningen field, black crosses: within the field).

Similarly to the accelerometer data, the difference between number of files and number of events can be explained by consecutive events being recorded in a common file. Such events are listed in Table 1.3. The distribution of the number of events over time is shown in Fig. 1.7.



FIGURE 1.7: Histogram of the number of events per year that were recorded by one or several borehole stations.



FIGURE 1.8: Maps showing the location of KNMI borehole stations (empty circles) and events for which borehole records are available (blue symbols) within (a) the Netherlands and (b) the Groningen field and surroundings. Event marker sizes are proportional to event magnitudes.

| TABLE 1.3: List of events that occur close in time and may be contained in single fi | iles. |
|--------------------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------------------|-------|

| Event origin time       | Magnitude |
|-------------------------|-----------|
| 2001-04-28 10:00:08.290 | 1.54      |
| 2001-04-28 10:00:55.510 | 1.08      |
| 2001-10-10 14:06:43.350 | 0.99      |
| 2001-10-10 14:06:57.240 | 0.75      |
| 2001-12-04 19:08:31.060 | 0.19      |
| 2001-12-04 19:08:37.830 | -0.01     |
| 2006-03-25 13:54:38.140 | 2.1       |
| 2006-03-25 13:55:51.170 | 1.7       |
| 2009-03-14 15:32:16.310 | 1.02      |
| 2009-03-14 15:32:27.700 | 0.98      |
| 2009-03-17 19:10:16.550 | 0.93      |
| 2009-03-17 19:10:33.600 | 0.93      |
| 2009-03-17 19:10:49.310 | 0.93      |
| 2009-03-17 19:11:12.380 | 1.01      |
| 2009-03-17 19:27:36.410 | 0.68      |
| 2009-03-17 19:28:41.320 | 0.68      |
| 2009-03-20 22:48:15.160 | 0.37      |
| 2009-03-20 22:49:29.960 | 0.45      |
| 2009-03-22 00:32:19.110 | 1.22      |
| 2009-03-22 00:34:53.490 | 0.61      |
| 2010-05-30 18:58:36.120 | 1.5       |
| 2010-05-30 18:58:57.990 | 1.2       |

Note that the number of events in Fig. 1.7 differs from Table 10 in KNMI's report (Dost et al., 2022), since we follow a different logic: KNMI counted all events in the induced seismicity catalogue for the time period of interest (610 events) and explained why for some of the events, records were not available, while we built the catalogue of events of interest to this specific project by associating files to events based on filenames.

The data availability at level 4 for all borehole stations is presented in Fig. 1.9. A number of stations (OTL, PPB and WMH) recorded only a few events as they are located farther away from the Groningen field in which most of the seismicity occurred (see Fig. 1.8a). Data availability plots for other borehole levels are placed in the appendix in Fig. B.1 to Fig. B.5 (pp. 90-92).

The distribution of event magnitudes (Fig. 1.10) shows that most events have a magnitude lower than 1.2. Many of them occur within the Groningen field (Fig. 1.8b) and therefore cannot be recorded by all borehole stations (e.g. PPB, WMH, OTL, VBG and in a lesser extent, ENV, VLW, HWF - see histogram on the right of Fig. 1.9).

Most data were acquired with a 120 Hz sampling rate, except at station FSW, which recorded data with a 121.12 Hz sampling rate until May 1996. Although the overwhelming majority of records are 128 s long (Fig. 1.11a), 80 records have shorter lengths (from 29.9 s to 115.2 s), while only a single record is longer (256 s) as demonstrated in Fig. 1.11b.



FIGURE 1.9: Overview of borehole triggered data (level 4 only). Grey rectangles represent the time span, in which stations were operational. Crosses symbolise events for which waveform data are available (blue: events outside the Groningen field, black: within the field). The histogram on the right summarises the number of events recorded at each station. Note that we distinguished stations by their full location, therefore FSW4 appears twice (locations '00' and '01').

#### Summary

The content of the borehole waveform data can be summarised as follows. We verified that the

### Borehole waveform data are complete.

information contained in the miniSEED files is correct in terms of trace ID (network name, station name, channel name), with respect to the events' origin times and the periods of operation of each station. No metadata are missing (records are always available for all three components and are correctly labelled, the sampling rate is always given and consistent).



FIGURE 1.10: Distribution of local magnitudes for the events recorded by the borehole stations between January 1995 and August 2010.



FIGURE 1.11: (a) Length of available borehole records in seconds. (b) Distribution of records with length differing from 128 s ("other"). Record lengths are given in seconds outside of the pie diagram. Proportions in % and number of records (in brackets) are indicated on pie slices exceeding 5%.

# Metadata completeness

# 2.1 Introduction

In this chapter, we assess the completeness of the station metadata. We verified that the information stated in the FDSN StationXML files (installation date, instrument correction and orientation) matches the information reported by KNMI (Dost et al., 2022). Further, we revised that this information is consistent with the waveform data. In addition, we verified that time synchronisation errors were reported. All analyses were performed using the Obspy python package (Beyreuther et al., 2010), except if specified otherwise.

# 2.2 Accelerometer stations metadata

# 2.2.1 Data

KNMI initially provided 17 StationXML files, one for each of the stations that recorded at least one event. A summary of the information extracted from these files is shown in Table 2.1. We verified that the periods of installation and coordinates for each station are consistent with Table 5 in Dost et al. (2022). In addition, we checked that the information is coherent for all channels. The naming of the stations and channels corresponds to header information from the waveform data. The sampling rate of 200 Hz is assigned consistently.

# 2.2.2 Instrument response

Two different sets of accelerometers were installed in the network, both manufactured by GeoSig, but with distinct instrument response: the AC-23 sensor, which is combined with the SMACH-SM2 datalogger, and the AC-63 sensor combined with the GSR-18 datalogger. The sensor type is specified for each station in Table 2.1.

According to personal communication with KNMI, the instrument response of the AC-23 sensor was provided by the manufacturer. However, it is stated by KNMI in an earlier report (Dost and Haak, 2002) that this transfer function "slightly differs" from what was previously provided by the manufacturer. That report also notes that the gain of the transfer function is technically not used, since the output of the data is already in cm/s<sup>2</sup>, such that no conversion to acceleration is required. Despite this, it is worth considering the reasons for any differences in the stated transfer function to understand the validity of the data. Neither the current report nor Dost and Haak (2002) explicitly states the unit of sensitivity for the transfer function, although it is implied in the former to be V/m/s<sup>2</sup>. The output of the transfer function, however, is declared as acceleration in the current report, while it is stated as being displacement in Dost and Haak (2002), suggesting the unit of sensitivity is V/m. The different information provided by the manufacturer of the sensors accounts for these differences. The instrument response of the AC-63 sensor was provided by the manufacturer as well and outputs data in the unit g, therefore as well in acceleration.

Since for both types of sensors, the output data are already expressed in acceleration (cm/s<sup>2</sup> and g), the total gain merely corresponds to the conversion of these units to m/s<sup>2</sup>. A schematic description of the different portions of the instrument response is shown in Fig. 2.1.

TABLE 2.1: Accelerometer metadata extracted from StationXML files. Fs is the sampling rate in Hz. Station orientations in the North, East, Z (up) coordinate system are specified by azimuth and dip angles in degrees. Note that no waveform data are associated with ZAN2.00, ZAN2.01 and ROS5.01.

| Name  |    | Channel | Installation date |            |         |        | Fs [Hz] |       |              | Dip [°] |
|-------|----|---------|-------------------|------------|---------|--------|---------|-------|--------------|---------|
| FRB2  | 00 | HGZ     | 2006-03-22        | 2014-09-17 | 53.1875 | 6.7655 | 200     | AC-63 | 0            | -90     |
|       | 00 | HG1     | 2006-03-22        | 2014-09-17 | 53.1875 | 6.7655 | 200     | AC-63 | $30 \pm 30$  | 0       |
|       | 00 | HG2     | 2006-03-22        | 2014-09-17 | 53.1875 | 6.7655 | 200     | AC-63 | $300 \pm 30$ | 0       |
| GARST | 00 | HGZ     | 2009-09-15        | 2014-09-17 | 53.3677 | 6.7135 | 200     | AC-63 | 0            | -90     |
|       | 00 | HG1     | 2009-09-15        | 2014-09-17 | 53.3677 | 6.7135 | 200     | AC-63 | $355 \pm 16$ | 0       |
|       | 00 | HG2     | 2009-09-15        | 2014-09-17 | 53.3677 | 6.7135 | 200     | AC-63 | $265 \pm 16$ | 0       |
| HKS   | 00 | HGZ     | 2005-04-26        | 2014-09-17 | 53.2920 | 6.7850 | 200     | AC-63 | 0            | -90     |
|       | 00 | HG1     | 2005-04-26        | 2014-09-17 | 53.2920 | 6.7850 | 200     | AC-63 | $358 \pm 19$ | 0       |
|       | 00 | HG2     | 2005-04-26        | 2014-09-17 | 53.2920 | 6.7850 | 200     | AC-63 | $268 \pm 19$ | 0       |
| KANT  | 00 | HGZ     | 2007-04-03        | 2014-07-01 | 53.3772 | 6.6621 | 200     | AC-63 | 0            | -90     |
|       | 00 | HG1     | 2007-04-03        | 2014-07-01 | 53.3772 | 6.6621 | 200     | AC-63 | $35 \pm 29$  | 0       |
|       | 00 | HG2     | 2007-04-03        | 2014-07-01 | 53.3772 | 6.6621 | 200     | AC-63 | $305 \pm 29$ | 0       |
| MID1  | 00 | HGZ     | 1996-12-20        | 2013-09-11 | 53.3473 | 6.6423 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1996-12-20        | 2013-09-11 | 53.3473 | 6.6423 | 200     | AC-23 | $199 \pm 19$ | 0       |
|       | 00 | HG2     | 1996-12-20        | 2013-09-11 | 53.3473 | 6.6423 | 200     | AC-23 | $289 \pm 19$ | 0       |
| MID3  | 00 | HGZ     | 1998-02-10        | 2003-03-17 | 53.3533 | 6.6472 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1998-02-10        | 2003-03-17 | 53.3533 | 6.6472 | 200     | AC-23 | 180          | 0       |
|       | 00 | HG2     | 1998-02-10        | 2003-03-17 | 53.3533 | 6.6472 | 200     | AC-23 | 270          | 0       |
|       | 01 | HGZ     | 2003-03-17        | 2013-09-10 | 53.3533 | 6.6472 | 200     | AC-23 | 0            | 90      |
|       | 01 | HG1     | 2003-03-17        | 2013-09-10 | 53.3533 | 6.6472 | 200     | AC-23 | $132 \pm 16$ | 0       |
|       | 01 | HG2     | 2003-03-17        | 2013-09-10 | 53.3533 | 6.6472 | 200     | AC-23 | $222 \pm 16$ | 0       |
| STDM  | 00 | HGZ     | 2009-09-15        | 2014-09-17 | 53.3123 | 6.6921 | 200     | AC-63 | 0.0          | -90     |
|       | 00 | HG1     | 2009-09-15        | 2014-09-17 | 53.3123 | 6.6921 | 200     | AC-63 | $57 \pm 21$  | 0       |
|       | 00 | HG2     | 2009-09-15        | 2014-09-17 | 53.3123 | 6.6921 | 200     | AC-63 | $327 \pm 21$ | 0       |
| WIN   | 00 | HGZ     | 2007-04-03        | 2014-09-17 | 53.3104 | 6.7471 | 200     | AC-63 | 0.0          | -90     |
|       | 00 | HG1     | 2007-04-03        | 2014-09-17 | 53.3104 | 6.7471 | 200     | AC-63 | $343 \pm 39$ | 0       |
|       | 00 | HG2     | 2007-04-03        | 2014-09-17 | 53.3104 | 6.7471 | 200     | AC-63 | $253 \pm 39$ | 0       |
| WSE   | 00 | HGZ     | 2006-10-11        | 2013-04-24 | 53.3444 | 6.7099 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 2006-10-11        | 2013-04-24 | 53.3444 | 6.7099 | 200     | AC-23 | $199 \pm 22$ | 0       |
|       | 00 | HG2     | 2006-10-11        | 2013-04-24 | 53.3444 | 6.7099 | 200     | AC-23 | $289 \pm 22$ | 0       |
| ZAN1  | 00 | HGZ     | 1999-06-29        | 2013-10-24 | 53.3657 | 6.7751 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1999-06-29        | 2013-10-24 | 53.3657 | 6.7751 | 200     | AC-23 | 88±17        | 0       |
|       | 00 | HG2     | 1999-06-29        | 2013-10-24 | 53.3657 | 6.7751 | 200     | AC-23 | $178 \pm 17$ | 0       |
| ZAN2  | 00 | HGZ     | 1999-06-29        | 2000-07-03 | 53.3568 | 6.7547 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1999-06-29        | 2000-07-03 | 53.3568 | 6.7547 | 200     | AC-23 | 180          | 0       |
|       | 00 | HG2     | 1999-06-29        | 2000-07-03 | 53.3568 | 6.7547 | 200     | AC-23 | 270          | 0       |
|       | 01 | HGZ     | 2000-07-03        | 2002-07-02 | 53.3568 | 6.7547 | 200     | AC-23 | 0            | 90      |
|       | 01 | HG1     | 2000-07-03        | 2002-07-02 | 53.3568 | 6.7547 | 200     | AC-23 | 180          | 0       |
|       | 01 | HG2     | 2000-07-03        | 2002-07-02 | 53.3568 | 6.7547 | 200     | AC-23 | 270          | 0       |
|       | 02 | HGZ     | 2003-09-30        | 2013-09-23 | 53.3568 | 6.7547 | 200     | AC-23 | 0            | 90      |
|       | 02 | HG1     | 2003-09-30        | 2013-09-23 | 53.3568 | 6.7547 | 200     | AC-23 | $210 \pm 15$ | 0       |
|       | 02 | HG2     | 2003-09-30        | 2013-09-23 | 53.3568 | 6.7547 | 200     | AC-23 | $300 \pm 15$ | 0       |
| ROS1  | 00 | HGZ     | 1996-06-13        | 1997-01-10 | 52.8425 | 7.0327 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1996-06-13        | 1997-01-10 | 52.8425 | 7.0327 | 200     | AC-23 | 180          | 0       |
|       | 00 | HG2     | 1996-06-13        | 1997-01-10 | 52.8425 | 7.0327 | 200     | AC-23 | 270          | 0       |
|       | 01 | HGZ     | 1997-01-10        | 2020-01-01 | 52.8425 | 7.0327 | 200     | AC-23 | 0            | 90      |
|       | 01 | HG1     | 1997-01-10        | 2020-01-01 | 52.8425 | 7.0327 | 200     | AC-23 | $172 \pm 8$  | 0       |
|       | 01 | HG2     | 1997-01-10        | 2020-01-01 | 52.8425 | 7.0327 | 200     | AC-23 | $262\pm8$    | 0       |
| ROS2  | 00 | HGZ     | 1997-02-20        | 2014-08-27 | 52.8206 | 7.0465 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1997-02-20        | 2014-08-27 | 52.8206 | 7.0465 | 200     | AC-23 | $191 \pm 24$ | 0       |
|       | 00 | HG2     | 1997-02-20        | 2014-08-27 | 52.8206 | 7.0465 | 200     | AC-23 | $281 \pm 24$ | 0       |
| ROS3  | 00 | HGZ     | 1997-02-20        | 2000-11-03 | 52.8365 | 7.0679 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1997-02-20        | 2000-11-03 | 52.8365 | 7.0679 | 200     | AC-23 | $163 \pm 4$  | 0       |
|       | 00 | HG2     | 1997-02-20        | 2000-11-03 | 52.8365 | 7.0679 | 200     | AC-23 | $253 \pm 4$  | 0       |
| ROS4  | 00 | HGZ     | 1998-12-17        | 2010-01-01 | 52.8365 | 7.0679 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 1998-12-17        | 2010-01-01 | 52.8365 | 7.0679 | 200     | AC-23 | $249 \pm 19$ | 0       |
|       | 00 | HG2     | 1998-12-17        | 2010-01-01 | 52.8365 | 7.0679 | 200     | AC-23 | $339 \pm 19$ | 0       |
| ROS5  | 00 | HGZ     | 2000-01-04        | 2003-02-18 | 52.8336 | 7.0479 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 2000-01-04        | 2003-02-18 | 52.8336 | 7.0479 | 200     | AC-23 | $141 \pm 21$ | 0       |
|       | 00 | HG2     | 2000-01-04        | 2003-02-18 | 52.8336 | 7.0479 | 200     | AC-23 | $231 \pm 21$ | 0       |
|       | 01 | HGZ     | 2003-02-18        | 2006-03-22 | 52.8336 | 7.0479 | 200     | AC-23 | 0            | 90      |
|       | 01 | HG1     | 2003-02-18        | 2006-03-22 | 52.8336 | 7.0479 | 200     | AC-23 | 180          | 0       |
|       | 01 | HG2     | 2003-02-18        | 2006-03-22 | 52.8336 | 7.0479 | 200     | AC-23 | 270          | 0       |
| ROS6  | 00 | HGZ     | 2000-11-03        | 2014-01-01 | 52.8275 | 7.0283 | 200     | AC-23 | 0            | 90      |
|       | 00 | HG1     | 2000-11-03        | 2014-01-01 | 52.8275 | 7.0283 | 200     | AC-23 | $146 \pm 21$ | 0       |
|       | 00 | HG2     | 2000-11-03        | 2014-01-01 | 52.8275 | 7.0283 | 200     | AC-23 | $236\pm 21$  | 0       |



FIGURE 2.1: Summary of the instrument response for (a) AC-23 sensors combined with SMACH-SM2 dataloggers and (b) AC-63 sensors combined with GSR-18 dataloggers.

Accelerometer instrument responses can be retrieved from the StationXML files.

In Figures 2.2 and 2.3, we reproduced the response amplitude and phase plots shown in

Dost et al. (2022, Figs. 4-6) based on the information available from the StationXML files for each station with a given sensor-datalogger combination. Since all curves plot on top of each other, the information contained in the StationXML files is correct and consistent. Moreover, the resulting plots visually correspond to the ones presented by Dost et al. (2022) (to ease the comparison, we use same axes scales and limits<sup>1</sup>).

In addition, units of input and output data are correctly labelled in the StationXML files.



FIGURE 2.2: Response for the AC-23 sensor individually (blue curve) and combined with the SMACH-SM2 datalogger (black curve). The two vertical red lines symbolise the corner frequencies of the two poles of the AC-23 sensor's transfer function at 0.15 and 143.4 Hz, respectively. When taking the datalogger into account, i.e. the transfer function of the Hogenauer filter (Dost et al., 2022, Fig. 3), the corner frequency at 143.4 Hz is lowered (see horizontal red line at -3 dB).

 $<sup>^{1}</sup>$ The decibel scale is defined as ten times the logarithm with base 10.



FIGURE 2.3: Response for the AC-63 sensor combined with the GSR-18 datalogger.

# 2.2.3 Sensor orientation

In their report (Dost et al., 2022), KNMI highlight that the sensors are oriented differently depending on the instrument type:

- AC-23: North, East, Z coordinates are all negative, i.e. the sensor is oriented in the South, West, Down system;
- AC-63: North, West, Z coordinates are positive.

The convention to store orientation angles in StationXML files is the North, East, Down system. Thus, we verified that the dip angle is given as 90° for the AC-23 sensors and as -90° for the AC-63 instruments in the StationXML files (Table 2.1).

In practice, the coordinate systems employed by KNMI mean that for the transition into the conventional North, East, Z (up) system, all components of the AC-23 sensors must be multiplied by -1, while for the AC-63 sensors, only the second horizontal component must be multiplied by -1.

To derive the horizontal components' orientations, KNMI tested two different methods, which are detailed in Dost et al. (2022). In this chapter, we merely verified that the azimuth angles given

Accelerometer orientations and their associated uncertainties can be retrieved from StationXML files.

in the StationXML files<sup>2</sup> (column "Azimuth" in Table 2.1 of the present document) are consistent with the results in Table 8 by Dost et al. (2022, column #8)<sup>3</sup>

<sup>&</sup>lt;sup>2</sup>Note that no orientation angles are given for a few specific location codes for the following stations: MID3.00, ZAN2.00, ZAN2.01, ROS1.00 and ROS5.01. Consequently, these stations were not oriented, but - being AC-23 sensors - assigned default values of  $180^{\circ}$  (South) and  $270^{\circ}$  (West) for the first and second horizontal components, respectively.

<sup>&</sup>lt;sup>3</sup>These latter values need to be corrected according to the aforementioned rules to be comparable to the azimuth angles stored in the StationXML files, i.e. for the AC-23 sensors,  $180^{\circ}$  need to be added for the orientation of the first horizontal component and  $90^{\circ}$  for the second horizontal component, whereas for the AC-63 sensors, the orientation of the second horizontal component is obtained by subtracting  $90^{\circ}$ . Note that the angles are defined in the range  $[0^{\circ}-360^{\circ}]$ .

#### NOTE

- Rotation to the N,E,D coordinate system can be achieved by using the angles stored in the StationXML files.
- Without use of the StationXML files, please be aware that the aforementioned corrections for the different types of sensors must be applied.

# 2.3 Borehole station metadata

#### 2.3.1 Data

Furthermore, KNMI provided 12 StationXML files for the borehole instruments, one for each of the stations having recorded at least one event. Each borehole comprises four or more geophones at different depths and a few are complemented by a surface sensor. A short summary of the information extracted from these files is shown in Table 2.2 for station ENM and for the other stations in the appendix (Tables B.2 to B.10, pp. 92-95). The information is consistent for all stations and components at all depth levels. The station coordinates as well as start and end dates are in agreement with the ones displayed in Table 2 by Dost et al. (2022). Note that some of the surface sensors (e.g. HWF0, PPB0) were installed later than the corresponding sensors within the borehole, as reported in Table 4 by Dost et al. (2022).

TABLE 2.2: Metadata extracted from the XML file for borehole station ENM. Depth is measured from ground level. Fs is the sampling rate in Hz. The station orientations in the North, East, Z (up) coordinate system are specified by azimuth and dip angles in °.

| Name |     | Installation date | Removal date | Latitude | Longitude | Depth [m] |   | Fs [Hz] |     | Dip [°] |
|------|-----|-------------------|--------------|----------|-----------|-----------|---|---------|-----|---------|
| ENM1 | HHN | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 50        | 1 | 120     | 122 | 0       |
|      | HHE | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 50        | 1 | 120     | 212 | 0       |
|      | HHZ | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 50        | 1 | 120     | 0   | -90     |
| ENM2 | HHN | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 100       | 1 | 120     | 177 | 0       |
|      | HHE | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 100       | 1 | 120     | 267 | 0       |
|      | HHZ | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 100       | 1 | 120     | 0   | -90     |
| ENM3 | HHN | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 150       | 1 | 120     | 164 | 0       |
|      | HHE | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 150       | 1 | 120     | 254 | 0       |
|      | HHZ | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 150       | 1 | 120     | 0   | -90     |
| ENM4 | HHN | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 200       | 1 | 120     | 91  | 0       |
|      | HHE | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 200       | 1 | 120     | 181 | 0       |
|      | HHZ | 1995-04-12        | 2010-01-22   | 53.4064  | 6.4817    | 200       | 1 | 120     | 0   | -90     |

Different borehole layouts were tested as illustrated in Fig. 2.4. FSW is the deepest borehole equipped with five sensors with 75 m spacing reaching 300 m depth. Note that its surface sensor is labelled FSW**1** as opposed to all other borehole stations, where the surface sensor is assigned the suffix "0". PPB is the second deepest borehole, also composed of five sensors with 75 m spacing to 240 m depth. Note that the first borehole sensor is placed at 15 m compared to 75 m for FSW. The remaining boreholes have a more consistent setup and are composed of four sensors placed with 50 m spacing to approximately 200 m depth.



FIGURE 2.4: Borehole station layouts. Depth is measured from ground level.

#### COMMENT ON THE GAIN CHANGE REPORTED BY KNMI

KNMI discussed the issue about minimal gain setting changes for the borehole data during three different epochs. These minor changes were not properly documented, but the changes in the gain factors relate to values of only 0.003% in the beginning to a maximum of 2.3% in the end. None of these changes have an impact towards magnitude estimates, as the general uncertainties of magnitude estimates are at least one order of magnitude larger than the potential difference in gain settings. We therefore see no practical issue related to the documentation of gain settings.

#### 2.3.2 Instrument response

All borehole sensors are of the same type (4.5 Hz SM6 geophones) and therefore have the same instrument response, except the FSW sensors before May 1996, when its datalogger was replaced. Details on how the response was obtained are described in Dost and Haak (2002) and are summarised schematically in Fig. 2.5. Please note that the specifications of poles and zeros indicated in the StationXML file slightly differs from the information given in Dost and Haak (2002), although according to Dost et al. (2022), this will not result in measurable changes in the response.

Borehole instrument responses can be retrieved from StationXML files. The instrument response information could be retrieved properly from the StationXML files, all instrument responses plot consistently on top of

each other in Fig. 2.6 and no discrepancies are observed compared to Figure 8 by Dost et al. (2022).

#### 2.3.3 Sensor orientation

The sensor orientation information was extracted from the StationXML files and compared to the values reported by Dost et al. (2022, Ta-

Borehole sensor orientations can be retrieved from StationXML files.

ble 7). No issues were found. All vertical components are oriented positive up, which, for the StationXML file convention (N-E-D), corresponds to dip angles of -90°.



FIGURE 2.5: Summary of the instrument response for (a) all borehole geophones except (b) FSW from 1992 to May 1996.



FIGURE 2.6: Amplitude (left) and phase (right) instrument response for all borehole sensors (black curves) as well as the first setup of station FSW (green curves).

#### WARNING!

Channel names for borehole stations are pseudo-North (HHN) and pseudo-East (HHE). In order for the rotation to be effective when using Obspy, the names of the components need to be specified as follows:

```
st.rotate(method="->ZNE", inventory=inv, components="ZNE")
```

instead of the default:

st.rotate(method="->ZNE", inventory=inv, components="Z12")

# Waveform and metadata validity

## 3.1 Introduction

This chapter addresses the validity and accuracy of both the waveform and metadata for the newly available borehole and accelerometer data. We first reviewed the accelerometer data and subsequently the borehole data. For each data type, we employed quality assurance tests for sensor orientation, amplitude validity and data timing. For each of these aspects, we first appraised the quality assurance methods used by Dost et al. (2022). In a second step, we applied spot checks of the outlined methods to independently validate KNMI's results, before finally implementing our own quality assurance tests.

## 3.2 Accelerometer data

### 3.2.1 Sensor orientation

#### Vertical component

Unfortunately, no teleseismic earthquake data are available among the accelerometer triggered data. As a consequence, we did not verify the orientation of the vertical component using the same methodology as for the borehole sensors (see section 3.3.1). However, note that the vertical component could theoretically be oriented by analysing the particle motion and measuring the incidence angle (e.g. Oye and Ellsworth, 2005). This analysis was not carried out, though, as most particle motions turn out to be elliptical (see next section on the orientation of horizontal components, e.g. Fig. 3.3a) which would lead to large uncertainties.

### Horizontal components

Regarding the orientation of the horizontal components, KNMI carried out two independent analyses, which are described in Dost et al. (2022): method 1 was applied automatically, while method 2 was performed manually. Both are based on the polarisation of P-waves. The data used to perform the analysis must be of sufficient quality, hence KNMI defined selection criteria based on a minimum event magnitude (to ensure a good signal-to-noise ratio) and a minimum event-station distance (to minimise the effect of location uncertainty). An additional threshold based on the absolute maximum amplitude recorded on the vertical component was defined as 0.1 cm/s<sup>2</sup>. For stations outside the Roswinkel field, selection criteria on distance and magnitude were set to 2 km and M<sub>L</sub>2.5. Within the Roswinkel field, due to better location accuracy, the distance criterion could be reduced to 1.5 km. Exceptions were made for stations ROS5 and ROS6, which otherwise could not have been oriented. KNMI provided a spreadsheet containing the individual orientation results of each analysed record. After checking that this list of records corresponds to the above criteria, we repeated the orientation analysis by implementing the automatic approach developed by KNMI (referred to as method 1) and compare the results.

Pre-processing consisted of the following work steps:

- bandpass-filter the data between 2 and 35 Hz;
- compute the STA/LTA function with a short-term average (STA) window of 0.01 s and a long-term average (LTA) window of 0.5 s;

- run an automatic detector on the STA/LTA trace with trigger-on and trigger-off thresholds set to 10 to determine the P-wave onset;
- cut the final analysis window 0.1 s before and 0.15 s after the trigger for AC-63 and 0.1 s before and 0.25 s after the trigger for AC-23 sensors<sup>4</sup>.

During pre-processing, we found that multiple triggers were obtained in many instances using the STA/LTA algorithm as outlined. Manual adjustments were necessary to select the proper trigger. Hence, we cannot guarantee that the P-wave arrival times obtained in this way were identical to KNMI's during the following analysis, despite using the same processing parameters, frequency band and window lengths<sup>5</sup>.

To perform the orientation analysis, the following steps were adopted:

- bandpass-filter the data between 2 and 30 Hz;
- consider the first component HG1 as pseudo-North and the second component HG2 as pseudo-East<sup>6</sup>;
- rotate the waveforms into the radial-transverse-vertical (R-T-Z) system for all possible backazimuth values from 0 to 360° with a 1° increment;
- for each rotation, compute the mean of the product of radial and vertical components (R·Z) as well as the energy on the tranverse component (|T|) as described in Jepsen and Kennett (1990);
- choose the back-azimuth angle which minimises |T| and maximises R.Z;
- correct this angle for the station-event back-azimuth;
- convert the resulting back-azimuth angle to azimuth (180° correction);
- compute the circular mean and standard deviation of the angles derived for each station analysing all recorded events. Note that KNMI used a different way of computing the mean and standard deviation. To ensure a fair comparison of their results with ours, we recomputed the circular mean and standard deviation for KNMI's results as well ( $\bar{\theta}_K$  and  $\bar{\sigma}_K$  in Table 3.1) and provide a comparison with the reported values ( $\bar{\theta}_K$ - $\bar{\theta}_R$  in Table 3.1). The differences are close to 0° and in all cases much below the uncertainty on the measurements confirming that the manner in which the mean was computed had no large impact.

Individual results are summarised in Fig. 3.1 and Table A.1 which can be found in the appendix (pp. 33 & 73).

The figure offers a direct comparison between NORSAR and KNMI results for each accelerometer. Most orientation measurements (dots, crosses and squares) are similar. However, some differ by

<sup>&</sup>lt;sup>4</sup>In general, window lengths for polarisation analyses should be as short as possible. Here, window lengths were chosen by KNMI after carrying out several tests and to overcome the fact that some events show very weak signals on the horizontal components, particularly for larger magnitude and distant events (KNMI pers. comm.).

<sup>&</sup>lt;sup>5</sup>In addition, the implementation of the STA/LTA algorithm may differ as well as the filter order and other details.

 $<sup>^{6}</sup>$ Note that all components of AC-23 sensors need to be multiplied by -1 to be in the correct N, E, Z (up) system, whereas only the HG2 component needs to be multiplied by -1 for AC-63 sensors.

TABLE 3.1: Summary of the accelerometer orientation analysis using an automated approach.  $\bar{\theta}$  is the circular mean of the azimuth angles found for all events at each station while  $\sigma_{\theta}$  is the circular standard deviation. Subscript *N* stands for NORSAR results while *K* stands for KNMI results (method 1). Subscript *R* refers to KNMI reported results (first two columns of Table 8 in Dost et al., 2022) employing a different formula to compute angular mean and standard deviation. Note that KNMI automatically assigned a 30° standard deviation to stations for which only a single measurement was available.

| Station | # events | $\bar{\theta}_K[^\circ]$ | $\sigma_{	heta_K}$ | $ar{	heta}_K$ - $ar{	heta}_R$ | $ar{	heta}_N[^\circ]$ | $\sigma_{	heta_N}$ | $ar{	heta}_N$ - $ar{	heta}_K$ |
|---------|----------|--------------------------|--------------------|-------------------------------|-----------------------|--------------------|-------------------------------|
| FRB2    | 1        | 39                       | -                  | 0                             | 32                    | -                  | -7                            |
| GARST   | 7        | 351                      | 24                 | 0                             | 351                   | 28                 | 0                             |
| HKS     | 4        | 353                      | 26                 | 1                             | 357                   | 25                 | 4                             |
| KANT    | 1        | 80                       | -                  | 0                             | 69                    | -                  | -11                           |
| MID1    | 2        | 9                        | 26                 | 0                             | 349                   | 43                 | -20                           |
| MID3    | 6        | 308                      | 21                 | 1                             | 310                   | 22                 | 2                             |
| STDM    | 1        | 54                       | -                  | 0                             | 71                    | -                  | 17                            |
| WIN     | 7        | 2                        | 54                 | -4                            | 329                   | 64                 | -33                           |
| WSE     | 6        | 19                       | 35                 | 1                             | 167                   | 177                | 148                           |
| ZAN1    | 3        | 268                      | 22                 | 0                             | 311                   | 71                 | 43                            |
| ZAN2    | 5        | 30                       | 19                 | 0                             | 76                    | 59                 | 46                            |
| ROS1    | 3        | 353                      | 21                 | 0                             | 347                   | 92                 | -6                            |
| ROS2    | 4        | 3                        | 42                 | 6                             | 17                    | 31                 | 14                            |
| ROS3    | 4        | 345                      | 4                  | 1                             | 253                   | 141                | -92                           |
| ROS4    | 2        | 65                       | 40                 | 0                             | 67                    | 17                 | 2                             |
| ROS5    | 1        | 331                      | -                  | 0                             | 337                   | -                  | 6                             |
| ROS6    | 1        | 322                      | -                  | 0                             | 330                   | -                  | 8                             |



FIGURE 3.1: Comparison of orientation results for each station. The number of events employed for the analysis is indicated in parentheses together with the station name. Shaded areas represent the standard deviation for each series of measurements. The radial axis indicates the event-station distance [in km]. The results' dispersion is discussed in the text in more details.

180° leading to much higher standard deviations for our own computations compared to KNMI's (blue- and red-shaded areas in Fig. 3.1, respectively). The 180° ambiguity should have been handled by combining |T| and R·Z observations. However, the maximum of R·Z and the minimum of |T| do not always coincide.

This is illustrated in Fig. 3.2, in which the angular axis represents the angular difference between NOR-SAR and KNMI orientations, while the radial axis represents the offset angle between min(|T|) and max(R·Z). In addition, the circles' colour indicates the linearity of the particle motion in the horizontal



Difference between NORSAR and KNMI angles

FIGURE 3.2: Angular difference between NORSAR's and KNMI's orientation results for accelerometers. The radial axis indicates the offset angle between R-Z and |T| measured in NOR-SAR's analysis. Circles are coloured by the linearity of the particle motion.

plane, which was obtained from its decomposition into eigenvectors and eigenvalues and defined as the ratio of the largest over the smallest eigenvalue. The more linear the motion, the more reliable the orientation should be. Fig. 3.2 shows that in general, NORSAR and KNMI obtained similar results if the offset angle was small (< 40°) and the particle motion linear (brighter colours). For all instances where the differences in orientation results are large, the offset angles are large (> 40°) and especially, the linearity is poor.

An example of the orientation analysis is displayed in Fig. 3.3 for an event recorded at station WSE. In this case, NORSAR's solution  $(234^{\circ})$  is approx.  $180^{\circ}$  different from KNMI's reported solution  $(66^{\circ})$ , while the offset angle between min(|T|) and max(R·Z) is significant (47°). On the left of Fig. 3.3a, the waveforms recorded on radial as well as vertical (HGZ), pseudo-North (HG1) and pseudo-East (HG2) components are plotted for the considered analysis window. On the right, the particle motion in the vertical (top) and horizontal plane (bottom) are shown. On the lower right plot, blue lines symbolise the orientation axes from NORSAR's analysis, while black lines correspond to KNMI's result; the red



FIGURE 3.3: Orientation result example. (a) Waveforms and hodograms for radial, vertical, pseudonorth and pseudo-east component, dashed line highlights potential delay. (b)-(c) Minimum of |T| (red line) does not correspond to maximum of R·Z (black line). See text for details.

line corresponds to the principal direction obtained by decomposition of the particle motion<sup>7</sup>. Especially in the horizontal plane, the particle motion is more circular than linear. In Fig. 3.3b, vertical (Z), radial (R) and transverse (T) components are displayed for all possible back-azimuth angles together with the corresponding R·Z traces. The black lines represent waveforms for the best back-azimuth angle chosen from Fig. 3.3c and the dashed lines represent waveforms rotated with respect to the back-azimuth minimising |T|, but not maximising R·Z. Finally, in Fig. 3.3c, |T| and R·Z curves are plotted for each possible back-azimuth angle and the best compromise between max(R·Z) and min(|T|) is represented by the vertical blue line. According to KNMI (pers. comm.), the  $\approx 180^{\circ}$  difference results from the delay of a few milliseconds observed between the radial and vertical components as illustrated by the two vertical dashed lines in Fig. 3.3a. This is also discussed in their report (Dost et al., 2022), but as stated there, no systematic correction was applied, potentially implying that their results were fine-tuned manually. Because manual work is subjective and difficult to reproduce, we did not explore the matter further.

To conclude, regarding the orientation of the horizontal components of the accelerometers, we were able to reproduce most of KNMI's results by following the same automatic approach as described in Dost et al., 2022. However, some results display huge differences resulting in larger final uncertainties. These differences are potentially related to the time delay sometimes observed between the vertical and radial components. However, if such small delays have

Although most of KNMI's orientation results could be confirmed, the remaining are afflicted with large differences, which result from instabilities in the analysis. These uncertainties are not completely reflected by standard deviations stored in the StationXML files. Therefore, users should be cautioned and be cautious in applying sensor orientations in their analyses.

such a large impact on the results, it indicates that the analysis is unstable. Besides, it is worthwhile noting that the orientation analysis was carried out on less than 3 events for half of the accelerometers, which is too little to guarantee a stable statistical analysis. Therefore, the user must be warned and be cautious in using the sensor orientations. Although standard deviations are stored in the StationXML files, they do not reflect the full uncertainty, especially in case of a low number of analysed events. We therefore recommend that KNMI emphasises this situation in their report (Dost et al., 2022).

 $<sup>^7\</sup>mathrm{This}$  method cannot resolve the  $180^\circ$  ambiguity.
## DISCUSSION ON ORIENTATION ANGLES UNCERTAINTIES

KNMI computed uncertainties by using the weighted mean of the standard deviations of the two methods, where the weights correspond to the number of events, resulting in smaller combined uncertainties. However, such an approach is fully valid only if the two methods were independent, which is not the case. An alternative way would be to combine the results of the two methods and compute the resulting standard deviation. In this case, the uncertainties would reflect the dispersion of different observations; thus, they tend to be larger. However, the independence assumption in this approach is also violated. One must be aware of the poor statistical significance of the results (only a handful of observations at each accelerometer) and therefore use the orientation angles with caution.

## 3.2.2 Amplitude validity and gain irregularities

## Assessment of the KNMI quality assurance tests

KNMI apraised the amplitudes of waveforms recorded on the accelerometers by computing event and station terms. These can be obtained if a ground-motion model is available, which is the case for the Groningen field (Bommer et al., 2019). A ground motion model (GMM) or ground-motion prediction equation (GMPE), as the name indicates, predicts the ground-motion amplitude resulting from an event (described in terms of its location and, more importantly, magnitude) at a specific distance. The station term is defined as the residual between observed and predicted amplitudes for a given event at a specific station, while the event term is defined as the average of the station terms for a specific event.

GMPEs are usually developed for larger magnitude events. For their analysis, KNMI selected a magnitude threshold of 2.5. Moreover, a minimum of 3 stations recording the event was required in order to compute the event term. Out of 82 events, only 20 events fit those criteria (Dost et al., 2022). Subsequently, the event terms obtained for the accelerometer data were compared to more recent events using both the current accelerometer and borehole networks (B- and G-networks, respectively). The analysis of both event and station terms led KNMI to conclude that despite the limitation of only few available events, no particular problem concerning the amplitudes of the accelerometer data could be identified. Instead of following their methodology, we conducted two independent analyses to verify the amplitudes of the accelerometer data.

## Maximum amplitude vs distance

Firstly, we extracted the maximum amplitude of each component for each event-station pair. For that purpose, data were instrument-corrected (resulting in all amplitudes being expressed in m/s<sup>2</sup>), rotated into the R-T-Z system and filtered using a butterworth band-pass filter from 2 to 35 Hz. Plotting these amplitudes as a function of event-station distance should highlight large discrepancies (Fig. 3.4). In general, we do not observe any particular issue: the amplitudes decrease as the distances increase. The largest amplitudes are observed at the Roswinkel stations for events with magnitude larger than 3 at very short distances (less than 2 km).



FIGURE 3.4: Maximum amplitude in m/s<sup>2</sup> as a function of distance for all records of (a) the radial,
(b) the transverse and (c) the vertical components. Black-bordered circles represent AC-63 sensors, white-bordered circles AC-23 sensors and blue-bordered circles Roswinkel stations (ROS\*). Circles are coloured by event origin time and their size is scaled by event magnitude.

## **RMS** amplitude

Secondly, we extracted the RMS amplitude prior to the first arrival for each station to track potential changes with time. We define the RMS as the square root of the mean of the squared amplitudes. To obtain the first arrival, the same procedure as used for the orientation analysis was implemented. The RMS computation window starts at the beginning of the file and stops 0.1 s before the signal onset. Before analysis, waveform data were instrument-corrected and filtered between 2 and 35 Hz. An example is displayed in Fig. 3.5.

Since the record lengths vary (Fig. 1.4), the RMS window lengths vary as well (Fig. 3.6); most analysis windows have a length of approximately 5 s. In general, the longer the time window, the more stable the measurement.

Fig. 3.7 shows all RMS amplitudes per component over time. Similar plots are available for all stations individually in Figs. A.2 to A.4 in the appendix (pp. 74-76). Components, which have been reported as temporally malfunctioning by KNMI (Dost et al., 2022) are represented by red-bordered circles and listed in Table 3.2.

| Station | Event origin time       | Comment                                       |
|---------|-------------------------|-----------------------------------------------|
| ROS1    | 1996-12-06 16:44:50.496 | KNMI reported malfunctioning X(=H1) component |
|         | 1996-12-28 18:14:26.531 | "                                             |
| ROS6    | 2004-09-06 20:31:16.345 | KNMI reported significant electronic noise    |
|         | 2006-03-25 13:54:32.210 | "                                             |
|         | 2006-03-25 13:55:47.080 | "                                             |

TABLE 3.2: List of files with erroneous amplitudes (red-bordered circles in Fig. 3.7).

To conclude, if we exclude records reported as malfunctioning (Table 3.2), the RMS amplitudes do not exhibit any conspicuous changes over time. It is worthwhile noting that some stations display



FIGURE 3.5: Three-component waveform records of the 9<sup>th</sup> June 2010 event recorded at FRB2. The blue-shaded area represents the RMS analysis window.







FIGURE 3.7: RMS amplitudes in cm/s<sup>2</sup> as a function of time. Black-bordered circles represent AC-63 sensors, white-bordered circles AC-23 sensors and blue-bordered circles Roswinkel stations (ROS\*). Red-bordered circles correspond to components reported as malfunctioning by KNMI. Circles are coloured by event origin time and their size is scaled by the RMS window length.

slightly higher RMS amplitudes than others (e.g. WSE, ZAN2 and to a lesser extent ZAN1 and GARST, see Figs. A.2 to A.4), corresponding to accelerometers exhibiting a higher station term (cp. to Fig. 30, Dost et al., 2022). This behaviour may be attributed to higher seismic noise close to the stations in question.

### Summary

We did not detect specific issues with accelerometer data amplitudes, but the amount of data available for the analysis is limited. Similar to KNMI, we do not report any specific issues related to the accelerometer data amplitudes. It is worthwhile noting, however, that the limited amount of available data (both in terms of number of records and length of re-

cords) makes it difficult to conduct an exhaustive analysis.

## 3.2.3 Data timing

In this section, accelerometer data timing is evaluated. The timing quality is assessed via a flag in the header of the miniSEED files (Dost et al., 2022). KNMI assigned a value of 100 in case of synchronisation and 0 if there was clearly no synchronisation or if the synchronisation could not be determined.

## Assessment of the KNMI quality assurance tests

As described by KNMI, time flags are stored in the blockette 1001 of each trace header in the miniSEED files. However, to get access to this information while reading the miniSEED file with ObsPy, the "details" option has to be set as True (see code snippet 3.1). Note that this information is currently not documented in the Obspy documentation of the "read" function, which makes it difficult to find for users. Moreover, this option is by default set as False and cannot be changed by the user when

calling the "get\_waveforms" function<sup>8</sup> to download data from the server (more details in section 4.1). To assist potential future users of the data, we provide an exhaustive list of available accelerometer records together with their time flags in Table A.2 in appendix of this report (p. 77).

```
1 from obspy import read
2 # Read the miniSEED file and set the "details" option to True
3 st = read('200311162004.mseed', details=True)
4 # Loop over each trace and read the time flag in the blockette 1001
5 for tr in st:
6    time_flag = tr.stats.mseed.blkt1001.timing_quality
7    print(tr.id, time_flag)
```

CODE SNIPPET 3.1: Extracting time flags from accelerometer waveform data

## Waveform plots

In order to review the timing of the records, we generated a series of waveform plots to which we added relevant information in the following manner:

- for AC-23 sensors: each synchronised record is coloured **black** and and each non-synchronised record is coloured in **light red**;
- similarly, for AC-63 sensors, each synchronised record is coloured blue, while non-synchronised records are coloured in pink. Note that information on time synchronisation was not possible to obtain for AC-63 sensors (Dost et al., 2022), thus by default, all records of stations FRB2, GARST, HKS, KANT, STDM and WIN were declared as non-synchronised.
- the event origin time is represented by an **orange** vertical dashed line.
- the P-wave arrival times that could be extracted from the event catalogue (QuakeML) are represented by **blue** vertical continuous lines.
- the theoretical P-wave arrival times estimated using an identical 1D velocity model both for Groningen and Roswinkel are represented by **blue** vertical dashed lines.

Different types of figures were generated displaying:

- 1. three-component waveforms for events aligned by the event origin time. This type of plot allows to spot obvious timing errors.
- 2. waveforms recorded on vertical components aligned by the event origin time and sorted by event-station distance. This type of plot allows to find smaller timing errors in addition. However, apparent timing errors may also be related to erroneous event locations.
- 3. three-component waveforms per station in order to identify stations with recurrent problems.

<sup>&</sup>lt;sup>8</sup>An alternative way would have been to use the get\_flag routine resulting in the flags being stored in an array. Presumably, each element of the array corresponds to a record in the miniSEED file. However, it turned out that the number of elements did not always correspond to the number of records, which made it impossible to associate the time flags with the data. After discussing with KNMI, it seems that the problem originates from the Obspy routine, which does not embed the information correctly if the miniSEED file contains multiple stations.

In this report, we only show the first type of plots for cases in which problems were identified. Please note that the information related to the event origin time, event location and event picks was extracted from the event catalogue. For the event-station distances, station coordinates were read from the StationXML files and the distances were computed in the lat/lon coordinate system before being converted to km. Although the theoretical travel-times were also computed using the event and station information from the respective QuakeML and StationXML files, we do not expect a perfect match to the data, since we may have employed a different velocity model than KNMI.

After having visually inspected the different plots, it resulted that:

- For most records, all available information match (e.g. Fig. 3.8a).
- For some records, timing errors are obvious and well reported by KNMI (e.g. Fig. 3.8b).
- For several events located in the Roswinkel field, the waveforms are delayed relatively to both the theoretical and manually determined arrival times, although the time flags indicate synchronicity (e.g. Figure 3.8c). KNMI (pers. comm.) explained this observation by a relocation carried out for these events.
- For other records, it is difficult to determine whether (1) the time was not synchronised, (2) if the origin time or location of the events was not well estimated or (3) if the velocity model employed to compute the theoretical P-wave arrival times was not adapted. An example is shown in Fig. 3.8d. None of the theoretical P-wave arrival times match the data even though timing issues were only reported at two stations: GARST and WIN (WIN records are outside the x-axis limits of the plot).
- In addition, some of the P-wave arrival times stored in the QuakeML files do not match the data (events #13 (ROS1), #53 (MID1), #66 (KANT), #74 (KANT, STDM), #75 (HKS), #80 (HKS)).

Time flags extracted for each record are reported in Table A.2 in the appendix (p. 77).

#### Summary

Assessing the absolute timing of the accelerometer triggered data is not simple. On many occasions, the information from the QuakeML event catalogue and the waveform data did not entirely match and it was difficult to conclude

Since QuakeML files were not examined and corrected in this project, the cause of mismatches between event catalogue information and waveforms is difficult to assess.

whether the problem is linked to a time synchronisation issue or to an issue in the event catalogue.

### 3.2.4 Conclusion

Standard quality control methods cannot be applied for the analysis of the triggered accelerometer data. There is no information available on synchronicity of the AC-63 records (comprising 25% of the records). AcAccelerometer data were analysed and evaluated. Due to both the limited amount of data and the shortness of the records, it is not

2

 $\mathbb{N}($ 



FIGURE 3.8: Examples of three-component accelerometer waveform data without (a) and with (b-d) timing issues. Description of individual examples in the text.

straightforward to apply standard quality control methods.

Timing information for AC-63 sensors could not be recovered, i.e. for at least 25% of the total number of records, it is unknown if they suffer from time synchronisation problems.

Sensor orientation results were partly unstable and results should be used with caution. Although uncertainties on orientation angles are stored in the metadata, they may not necessarily be representative of the real uncertainties due to the very limited number of events that could be analysed.

The analysis of amplitudes did not reveal any major issue.

## 3.3 Borehole data

## 3.3.1 Sensor orientation

## Vertical component

Similar to KNMI (Dost et al., 2022), we used teleseismic events to check the polarity of the vertical components of the borehole stations. However, we did not compare the traces with broadband records, but employed the direct P phase or the PKP phase, which at an approximate distance of 145° has a large amplitude due to a focusing effect (Fig. 3.9). This test constitutes only a spot check, since the events chosen for the analysis do not cover the whole time period under analysis. We employed data from the events listed in Table 3.3 and displayed in Fig. 3.10.



- FIGURE 3.9: Illustration of the ray paths of the phases observed for the 1997 Fiji and 1999 China earthquakes.
- TABLE 3.3: List of teleseismic earthquakes used to check the borehole instruments' orientation.  $\Delta$  is the epicentral distance expressed in degrees.

| Datetime                | Latitude [°] | Longitude [°] | Depth [km] | Mw  | Region | $\Delta$ [°] |
|-------------------------|--------------|---------------|------------|-----|--------|--------------|
| 1997-09-04 04:23:35.730 | -26.4997     | 178.3193      | 608.0      | 6.8 | Fiji   | 153          |
| 1998-03-29 19:48:12.970 | -17.6585     | -178.9897     | 499.6      | 7.1 | Fiji   | 144          |
| 1999-04-08 13:10:34.130 | 43.609       | 130.413       | 564.1      | 7.1 | China  | 72           |

Vertical component waveform data recorded at all levels of available borehole stations are displayed in Fig. 3.11 for the first earthquake and in the appendix for the two others (Figs. B.6 and B.7, p. 96). All waveforms were instrument-corrected to velocity, oriented in the geographical coordinate system using the information from StationXML files and filtered at low frequencies between 0.05 and 0.8 Hz.

Our observations are summarised below:

• for the 1997 Fiji earthquake (Fig. 3.11): polarities of the PKP-phases are consistent across the stations, but show a polarity reversal **at PPB level 2**. In addition, the vertical component of VBG level 4 seems to be malfunctioning, as well as the three components of ZL2 level 4 and ZLV levels 3 and 4.



FIGURE 3.10: Location of the three teleseismic earthquakes employed to check the orientation of the borehole sensors.

- for the 1998 Fiji earthquake (Fig. B.6): polarities of the PKP-phases are consistent across the stations, but show a polarity reversal **at PPB level 2**. In addition, the vertical component of VBG level 4 seems to be malfunctioning and no data were available for ZL2. Also note that the data available at OTL span the time period just after the PKP-phase arrivals.
- for the 1999 China earthquake (Fig. B.7): polarities are consistent across the stations, including PPB level 2. Only the vertical component of VBG level 4 is malfunctioning.

To conclude, the orientation of the vertical component (positive up) of the borehole sensors is consistent. The observed polarity reversal at PPB2 between May 1995 and May 1998 is reported by KNMI (Dost et al., 2022), but not yet included in the StationXML file. The other malfunctioning components are also reported in Appendix B of KNMI's report. Only the orientation of the vertical component of VBG4 could not be assessed and, as indicated by KNMI, this component was never repaired.

## Horizontal components

The orientation of the horizontal components of most borehole stations was determined using check shots as reported by Diephuis and Asmussen (1995) and later on, also explosions and local events (Ruigrok et al., 2019). The analysis of check shots cannot be repeated here and all the documents related to it were appended to KNMI's report (Dost et al., 2022). Dost et al. (2022) emphasised that the orientation of borehole sensors placed at the surface was more difficult to assess due to insufficient check shot data quality and that therefore most of them (except FSW1) were assigned default values of 0° and 90° for the first and second horizontal components, respectively.

The investigation presented in Dost et al. (2022) merely aims to resolve the 180° ambiguity by comparing the polarity of the vertical and radial components, not to assess the general orientation of horizontal components. As noted by KNMI, only the orientation for FSW, ENM, PPB and VBG remained the same as in previous documents; for all other stations, the orientation of the horizontal components was shifted by 180°. Orientations are verified by Dost et al. (2022) by showing event waveforms rotated into the R-T-Z system, in which radial and vertical components should be in phase and thus, exhibit the same polarity for the P-wave onsets.

It is also worthwhile noting that, contrary to the accelerometers, no uncertainties are assigned to



1997-09-04 04:23:35 - Mw=6.8

FIGURE 3.11: Vertical component waveforms recorded on each level of every borehole station for the 1997  $M_w$  6.8 Fiji earthquake and filtered between 0.05 and 0.8 Hz. Blue vertical bars represent the theoretical arrival times of the PKP-phases using the iasp91 1D velocity model (Kennett and Engdahl, 1991). Traces have been sorted by decreasing distance to the source from top to bottom.

orientation angles in the borehole StationXML files.

In order to assess the orientation of the horizontal components of the borehole sensors, we performed a semi-automated approach similar to the one implemented for the accelerometer data. Data selection and steps to obtain the final results are briefly described below:

- A first, rough selection based on the event catalogue was performed, keeping only records corresponding to events with local magnitude above 2.5 and event-station distance over 2 km. This resulted in 970 records.
- P-wave onsets were picked manually on instrument-corrected and bandpass-filtered data (2-35 Hz) recorded on the vertical component, whenever possible. This resulted in 823 records.
- A more strict selection of records was achieved based on a signal-to-noise ratio criterion ( $\geq$ 25) computed on the vertical component only <sup>9</sup>. This resulted in 619 records.
- An automated orientation analysis was conducted (same as for the accelerometer data, see section 3.2) aiming to maximise R·Z and minimise |T|. For that purpose, we chose a time window starting 0.1 s before and reaching up to 0.25 to 0.35 s after the P-onset <sup>10</sup>.
- Results were inspected visually (three-component waveforms in the analysis window and hodograms, see Fig. B.18, p. 106 for an example ); following this, a number of records, for which the horizontal component data were extremely noisy, was rejected. This narrowed the selection to a total of 404 records, unequally split between the different levels of the 12 borehole stations.

Final results are presented in Fig. 3.12 and Figs. B.8 to B.17 (pp. 103-106) in the appendix for each borehole station.



FIGURE 3.12: Orientation results for all levels of station FSW. The number of measurements contributing to the mean solution (blue line) is indicated in parentheses. Angles stored in the StationXML file are represented by the two black lines. Individual results are shown as circles with colour depending on the linearity of the particle motion in the horizontal plane (see Fig. 3.13) and size being proportional to event magnitude, plotted as function of the event-station distance in km (radial axis). Blue-shaded areas symbolise standard deviations.

 $<sup>^{9}</sup>$ We defined the SNR as the maximum amplitude after the P-onset over the mean amplitude measured from the start of the record to 50 samples before the P-onset.

<sup>&</sup>lt;sup>10</sup>For more distant earthquakes ( $\geq$  100 km), a longer time window was chosen. In practice, it would be better if the analysis window would be adapted manually for each record.

Individual results are summarised in Table B.13 (p. 98) and mean results in Table 3.4. Note that due to

TABLE 3.4: Summary of the borehole station orientation analysis.  $\bar{\theta}$  is the circular mean of the azimuth angles found from all events at each station, while  $\sigma_{\theta}$  is the circular standard deviation.  $\theta_{XML}$  denotes angles assigned to the first horizontal component in the station XML files. Cells coloured in orange highlight differences over 30° and in red over 90°.

| Station      | # events | $\bar{\theta}[^{\circ}]$ | $\sigma_{\theta}[^{\circ}]$ | $\theta_{XML}[^{\circ}]$ | $\bar{\theta} - \theta_{XML}[^{\circ}]$ |
|--------------|----------|--------------------------|-----------------------------|--------------------------|-----------------------------------------|
| ENM1         | 6        | 140                      | 52                          | 122                      | 18                                      |
| ENM2         | 8        | 179                      | 9                           | 177                      | 2                                       |
| ENM3         | 10       | 197                      | 82                          | 164                      | 33                                      |
| ENM4         | 10       | 89                       | 24                          | 91                       | -2                                      |
| ENV1         | 8        | 316                      | 11                          | 322                      | -6                                      |
| ENV2         | 10       | 333                      | 46                          | 337                      | -4                                      |
| ENV3         | 12       | 208                      | 4                           | 207                      | 1                                       |
| ENV4         | 11       | 301                      | 6                           | 311                      | -10                                     |
| FSW1         | 11       | 299                      | 64                          | 158                      | 141                                     |
| FSW2         | 17       | 202                      | 55                          | 204                      | -2                                      |
| FSW3         | 20       | 18                       | 8                           | 11                       | 7                                       |
| FSW4         | 17       | 206                      | 11                          | 214                      | -8                                      |
| FSW5         | 21       | 287                      | 9                           | 278                      | 9                                       |
| HWF0*        | 2        | 162                      | 11                          | 0                        | 162                                     |
| HWF1         | 10       | 164                      | 9                           | 166                      | -2                                      |
| HWF2         | 11       | 261                      | 13                          | 257                      | 4                                       |
| HWF3         | 13       | 342                      | 12                          | 342                      | 0                                       |
| HWF4         | 14       | 200                      | 11                          | 199                      | 1                                       |
| OTL1         | 1        | 80                       | 0                           | 89                       | -9                                      |
| OTL2         | 2        | 192                      | 8                           | 191                      | 1                                       |
| OTL3         | 1        | 344                      | 0                           | 325                      | 19                                      |
| OTL4         | 2        | 105                      | 2                           | 115                      | -10                                     |
| VBG1         | 3        | 297                      | 78                          | 340                      | -43                                     |
| VBG2         | 4        | 283                      | 3                           | 294                      | -11                                     |
| VBG3         | 9        | 97                       | 41                          | 104                      | -7                                      |
| VBG4         | 3        | 74                       | 12                          | 90                       | -16                                     |
| VLW0*        | 2        | 321                      | 30                          | 0                        | -39                                     |
| VLWI         | 7        | 156                      | 100                         | 202                      | -46                                     |
| VLW2         | 7        | 249                      | 12                          | 252                      | -3                                      |
| VLW3         | 5        | 123                      | 3                           | 123                      | 10                                      |
| WDD0*        | 9        | 174                      | 70                          |                          | -12                                     |
| WDB0*        | 5        | 174                      | 10                          | 0                        | 1/4                                     |
| WDB1         | 0        | 220                      | 42                          | 94                       | -9                                      |
| WDB2<br>WDB3 | 2        | 102                      | 20                          | 131                      | -12                                     |
| WDB4         | 11       | 240                      | 23                          | 250                      | -10                                     |
| WMH2         | 1        | 350                      | 0                           | 200                      | -10                                     |
| WMH3         | 1        | 282                      | 0                           | 280                      | -13                                     |
| WMH4         | 1        | 202                      | 0                           | 210                      | 11                                      |
| ZL21         | 2        | 96                       | 120                         | 25                       | 71                                      |
| ZL22         | 4        | 356                      | 5                           | 350                      | 6                                       |
| ZL23         | 6        | 166                      | 7                           | 160                      | 6                                       |
| ZL24         | 2        | 43                       | 13                          | 44                       | -1                                      |
| ZLV0*        | 10       | 185                      | 23                          | 0                        | -175                                    |
| ZLV1         | 14       | 76                       | 61                          | 64                       | 12                                      |
| ZLV2         | 20       | 134                      | 79                          | 133                      | 1                                       |
| ZLV3         | 20       | 226                      | 30                          | 222                      | 4                                       |
| ZLV4         | 20       | 131                      | 10                          | 130                      | 1                                       |

the selection criteria, no results could be obtained for PPB (all levels) and WMH1. Orientation angles of levels WMH2-4 resulted from a single measurement each. The same is true for OTL1-4.

The resulting mean angles are mostly in good agreement (within 20°) with the ones stored in the StationXML files. As expected, uncertainties (i.e. scattering of individual results) are usually larger for sensors placed closer to the surface (e.g. Fig. 3.12), despite the contrary behaviour is observed as well (e.g. ENM3 is less constrained than ENM2, see Fig. B.8, p. 103). Because the results were too scattered, borehole sensors placed at the surface were not oriented previously, except FSW1. Our results for this latter sensor, despite a few outliers, seem to be consistent and give a direction of 300°. This value is rather different from the one reported by KNMI (leftmost plot in Fig. 3.12), which can be

explained by differences both in the data used for the analysis and in the method employed, since KNMI used S-waves (Dost et al., 2022). For other surface sensors, either records are too sparse (HWF0, VLW0) or results are too dispersed (WDB0) to draw a final conclusion. Furthermore, in Table 3.4, it appears that results that show medium discrepancies ( $30^{\circ} \leq \bar{\theta} \cdot \theta_{XML} \leq 90^{\circ}$ , marked in orange) and are not related to borehole sensors placed at the surface correspond to either a low number of measurements ( $\leq 3$ ) or are affected by larger uncertainties. However, for ZLV0, all ten measurements are relatively consistent (see Fig. B.17, p. 106).

A selection of good quality results is visible in the appendix in Figs. B.18 to B.28 (pp. 106-111) for a selected sensor within each borehole. Results are considered to be of good quality if waveforms have a sufficient SNR and the particle motion is linear in both the horizontal and the radial-vertical planes. Such high-quality results always agree within  $\pm 20^{\circ}$  with the orientation angles given in the StationXML file (black lines). Note that the angle that results from the decomposition into eigenvectors and eigenvalues of the particle motion in the horizontal plane (red line) is often, but not always, consistent with the orientation found by employing the method by Jepsen and Kennett (1990).

Finally, as for the accelerometer data, angles deviating from the mean solution by close to 180° can occasionally be explained by a delay between radial and vertical components (Fig. 3.13). However, in



FIGURE 3.13: Angular difference between our results and angles stored in borehole StationXML files. Non-oriented surface sensors (HWF0, VLW0, WDB0 and ZLV0) are removed from this plot. The radial axis indicates the offset angle between R·Z and |T| measured in our analysis. Circles are coloured by the linearity of the particle motion.

the case of the surface sensor FSW1, such delay is not observed (see Fig. B.29, p. 112).

## DISCUSSION ON ORIENTATION ANGLES UNCERTAINTIES

Uncertainties of orientation angles for individual borehole levels are not provided in the StationXML files, but are considered to be low (<10° according to Dost et al., 2022). They were computed using weighted standard deviation (Ruigrok et al., 2019; KNMI, 2019), namely using the inverse-variance weighting scheme (*Wikipedia*, last accessed 14/09/2022). However, we find that this way of computing uncertainties is not particularly suited to this case, where the uncertainties should be representative of the dispersion of the observations. Instead, it returns the smallest variance, which explains why the uncertainty decreases if the number of observations increases. However, in our opinion, the weighted uncertainty defined for the accelerometers (see our previous comment in section 3.2) would be more suitable here, especially since in this case, the independence assumption is not violated, because the observations result from different data sets, such as check shots, local explosions and local seismicity.

#### Summary

Both the orientation of the vertical and horizontal components of borehole sensors is consistent with the values in the StationXML files. The only exception is FSW1, where components might be switched. The polarity of the vertical components of borehole sensors was checked using teleseismic earthquake records and showed that they are consistently oriented upwards (i.e., the dip is -90°), with only one exception as described in Dost et al. (2022). The orientation of horizontal

components was verified by taking advantage of the locally induced seismic events and agrees well with the orientations previously obtained from check shots. In addition, orientation angles of surface sensors that could hitherto not be analysed could be evaluated now, although the results should be employed only cautiously.

## 3.3.2 Amplitude validity and gain irregularities Assessment of the KNMI quality assurance tests

KNMI carried out a relative comparison of amplitudes recorded at different borehole levels, which helps spotting issues at a specific level for a specific component. For that purpose, the maximum amplitudes of a given event recorded by a certain component at a specific borehole are normalised by the average over all levels, based on the assumption that it is very unlikely that several geophones experience a similar problem simultaneously. For example, if a record presents a significantly lower amplitude than average (KNMI detects an anomaly below a threshold of 0.4), it may indicate a problem. However, the shallower the geophone, the higher the amplitude due to amplification in the shallow layers. Thus, the ratio tends to increase significantly for sensors located closer to the surface.

The analysis was performed for raw (i.e. not corrected for instrument response) and unfiltered data. Note that only deep levels were considered, except in the case of FSW where the surface geophone FSW1 was also included. This means that no information on the validity of amplitudes recorded on the surface sensors co-located with the boreholes is given by KNMI. Dost et al. (2022) provide figures for each borehole station together with descriptions of the identified anomalies. The method constitutes a good approach to track problems sporadically affecting a component or a geophone at a specific level, but will not be able to identify, for example, if a borehole station experiences higher noise conditions at all levels.

### Maximum amplitudes vs distance

We apply the same approach as for the accelerometer data. Data were instrument-corrected (amplitudes expressed in m/s) and rotated into the ray system using the sensor orientation from the StationXML files and the back-azimuth angles computed from the event location. Data were filtered using a butterworth band-pass filter from 2 to 50 Hz. Results are presented in Fig. 3.14. Malfunction-



FIGURE 3.14: Maximum amplitudes in  $\mu$ m/s as a function of distance for all records on (a) the radial, (b) the transverse and (c) the vertical components. Circles are coloured by event origin time and their size is scaled by event magnitude. Red-bordered circles symbolise saturated records reported by KNMI, white-bordered circles erroneous records reported by KNMI and white crosses records that contain more than one event.

ing components and saturated records collected by KNMI in their report (tables 12-15 in section 5.2.4 and appendix G in Dost et al., 2022) are highlighted. The information is also summarised visually in appendix B.5 (p. 112). In addition, we marked the events, which belong to records containing multiple events, by white crosses (see Table 1.3, p. 19). In these cases, only the maximum amplitude of the largest event in the file was measured.

In Fig. 3.14, it appears that a large number of records at small distances are reported as saturated by KNMI. Therefore, Fig. B.54 (p. 132) in the appendix shows the results without saturated and malfunctioning records. No erroneous amplitudes could be identified. Individual results by stations and levels are available in the appendix B.6 in Figs. B.42 to B.53 (pp. 120-131).

## **RMS amplitudes**

Subsequently, we applied a similar approach as for the accelerometer data. Data were instrumentcorrected (amplitudes expressed in m/s) and filtered using a butterworth band-pass filter from 2 to 50 Hz. Similar to KNMI, we did not rotate the data, hence the horizontal components are pseudo-North and pseudo-East. The noise window was chosen from the start of the record to 0.1 s before the theoretical P-wave arrival time. In most cases, this is sufficient to ensure that the window does not include signals due to either mismodelling of the velocity model, event location inaccuracies or minor time synchronisation errors. However, if major timing errors occur, the approach is defective. As shown in Fig. 3.15, there is a large variability in the RMS window lengths with a quasi-uniform distribution from 10 to 128 s.



FIGURE 3.15: Distribution of the RMS window length in seconds for borehole data.

Results are presented in Fig. 3.16. There seems to be a slight increase in amplitude levels after the



FIGURE 3.16: RMS amplitudes in μm/s as a function of time for all records on the (a) pseudo-North,
(b) pseudo-East and (c) vertical components. Circles are coloured by event origin time and their size is scaled by RMS window lengths. Red-bordered circles symbolise saturated records and white-bordered circles erroneous records reported by KNMI and white crosses indicate records that contain multiple events.

year 2005. However, the individual results for each station and level have to be assessed before an interpretation (appendix B.7, Figs. B.55 to B.66, pp. 133-144). Note that all records which clearly display anomalous RMS amplitudes in Fig. 3.16 correspond to records reported as problematic by KNMI, with the exception of the 2008-02-19 15:44:51 event recorded on VLW, for which the noise window seems to include a local spurious signal (Fig. B.67, p. 145).

For each station, we manually reviewed the records corresponding to abnormally high amplitudes. We defined an outlier as a record with an RMS amplitude higher than the 95<sup>th</sup> percentile of all records

for a given station, level and component. Note that we excluded PPB, OTL and WMH, since too little data was available for these stations. In general, we found that most anomalies were due to either:

- local noise conditions or electronic noise affecting the records (e.g. Fig. B.67, Fig. B.68, Fig. B.69 and Fig. B.70, pp. 145-pp. 146), or
- the noise window containing the event (e.g. Fig. B.71,p. 147);

Note that many of these outliers were already flagged by KNMI in their report. We also noticed that records featuring abnormally low amplitudes correspond to smaller noise windows, i.e. the noise sample is not representative.

We are not only interested in individual records, but also in longer-term changes. Therefore, in Fig. B.72 and Figs. B.73 to B.81 (pp. 147-156), we present the same results without outliers. We summarise our observations in the following:

- **EMN** (Fig. B.55, p. 133 & Fig. B.73, p. 148): RMS amplitudes seem to steadily increase over time. From 2008 on, amplitudes do not exceed 0.15  $\mu$ m/s on the pseudo-East component of ENM1.
- **ENV** (Fig. B.56, p. 134 & Fig. B.74, p. 149): RMS amplitudes seem to steadily increase over time. The most striking change is observed on the pseudo-North component of ENV4 on which RMS amplitudes are sporadically abnormally high from November 2005 on. Two examples of such records are shown in Fig. B.83 (p.158).
- **FSW** (Fig. B.57, p. 135 & Fig. B.75, p. 150): beginning in year 2005, amplitudes recorded on all three components and all depth levels (i.e. except FSW1 at the surface) are significantly increased. A decrease towards lower values (but not to the original level) is visible from 2009 on. Examples are shown in Fig. B.84 (p. 158). Nevertheless, this behaviour tends to disappear if the data are not filtered, meaning that it seems to be restricted to a certain frequency band (see Fig. B.82, p. 157).
- VBG (Fig. B.61, p. 139 & Fig. B.77, p. 152): RMS amplitudes decrease on the pseudo-East component of VBG1 starting from mid-2003 on (e.g. Fig. B.85a, p. 159). Lower amplitudes are also observed on the vertical component of VBG4 from 1996 to late 1999 (e.g. Fig. B.85b, p. 159).
- VLW (Fig. B.62, p. 140 & Fig. B.78, p. 153): from 2008 on, VLW0 has very low amplitudes on all three components (e.g. Fig. B.86, p. 159). From 2001 until late 2004, the pseudo-East component of VLW3 exhibits higher amplitudes (e.g. Fig. B.87, p. 160).
- WDB (Fig. B.63, p. 141 & Fig. B.79, p. 154): abnormally low amplitudes on the pseudo-North component of WDB3 are observed from 1996 to the end of 1998, and on its vertical component from 2004 on (e.g. Fig. B.88a, p. 160). Finally, the vertical and pseudo-North components of WDB0 show low amplitudes from 2010 on (e.g. Fig. B.88b, p. 160).
- **ZL2** (Fig. B.65, p. 143 & Fig. B.80, p. 155): Around the year 2000, the vertical component of ZL24 records higher amplitudes, as was also reported by KNMI (e.g. Fig. B.89, p. 161).
- **ZLV** (Fig. B.66, p. 144 & Fig. B.81, p. 156): from 2006 on, low amplitudes are observed on the pseudo-East component of ZLV0 (e.g. Fig. B.90a, p. 161). On the vertical component, there are

two episodes featuring low amplitudes: from 2002 to 2004 and 2007 to 2009 (e.g. Fig. B.90, p. 161). The pseudo-North component of ZLV1 went through an episode of significantly higher amplitudes from 2004 to late 2006 (e.g. Fig. B.91, p. 162). Lastly, ZLV4 amplitudes seem to increase over time on the pseudo-East component, especially from mid-2004 on.

Also note that noise levels generally increase closer to the surface and are slightly higher on the vertical component than on the two horizontal components.

#### Summary

In general, we did not find any major issues regarding the amplitudes recorded on borehole sensors. The analysis of RMS amplitudes is very suited to identify patterns and led to similar findings as by KNMI. Most of the problematic cases are records that KNMI reported as well, either as

The analysis of RMS amplitudes is especially suitable to identify anomalous amplitude levels. Most of our and KNMI's findings overlap, but we detected a peculiar behaviour at station FSW in addition.

observations in Dost et al. (section 5.2.4 of 2022) or as component malfunctions (appendix F & G of the same report). A few outliers were due to issues caused by the automatic implementation (most notably, the noise window selection). The only instance that we found in addition concerns the FSW stations showing an increase in noise level from 2006 on for all components and levels, except on the surface sensor. Due to this exemption, an increase in ambient seismic noise level is improbable. In addition, we observed that this behaviour was hardly identifiable on unfiltered data (Fig. B.82, p. 157). According to KNMI (pers. comm.), the effect could be due to ageing of the equipment.

#### 3.3.3 Data timing

#### **DCF signal**

As opposed to AC-23/SM2 accelerometer stations, the borehole timing was achieved by recording the DCF signal simultaneously as separate channel. The DCF is a German long-wave time signal with the sender located close to Frankfurt, Germany, being received in large parts of Europe. Short-term disconnections of under two minutes may occur due to service interruptions, while longer lasting interruptions may be due to strong winds, freezing rain or snow-induced antenna movement (https://en.wikipedia.org/wiki/DCF77). The carrier signal has a frequency of 77.5 kHz generated from local atomic clocks linked with the German master clocks. In addition, the signal carries an amplitude-modulated, pulse-width coded 1 bit/s signal and a phase modulation. These carry information on the current date and time, leap second warnings, an announcement of the change to and from summer time, abnormal transmitter operation identification as well as parity bits. Since 2003, it also carries a civil defence emergency signal and since 2006, a civil protection and weather forecast signal.

The knowledge on how to decode the amplitude and phase modulation of the DCF signal seems to have been lost within the seismological community and we strongly encourage KNMI to collect this information and publish it along with the data. The DCF77 signal marks seconds by reducing carrier power; the rising zero-crossings occur on the second, and the last second of every minute is marked by no carrier power reduction. Below, we analyse the recordings searching for these zero-crossings. More information is available by

decoding the amplitude or phase modulation.

Due to the rise of the Global Positioning System (GPS), which is used to achieve timing at seismic stations nowadays, the knowledge of how to decode the signal seems to have been lost within the seismological community. While it was not feasible for us to recover it during the short period of this review, we strongly encourage KNMI to collect this information and publish it along with the data.

Although no DCF decoder was available and thus, not all information could be recovered, we endeavour to analyse the DCF signals available for each record with the aim of **automatically** assigning flags reflecting the reliability and quality of timing. The steps that we used are described as follows:

- 1. find the position of the pulses;
- 2. check if the first pulse corresponds to a second: if yes, assign a flag on the second mark that is 0; otherwise, the flag is equal to the number of samples that separates the pulse from the nearest second;
- 3. compute the theoretical position of the pulses and compare them with the position of the recorded pulses;
- 4. keep only the pulses that do NOT match with the theoretical pulses;
- 5. check if the missing pulses correspond to the last second pulse before a minute: if this is the case, assign a flag on the minute mark that is 0; else, the flag is equal to the number of samples that separates the pulse from its theoretical position;
- 6. check if there are still pulses, which do not correspond to either second or minute marks. These pulses are called spurious. If the pulses on second marks are irregular, they will count as spurious as well.

In short, our analysis returns three flags for each record: one for the second mark, one for the minute mark (both giving the number of samples of difference between the observed pulse and the theoretical pulse) and one for spurious marks in-between (only "true"/"false"). Please note that FSW had different DCF settings<sup>11</sup> from 1992 to May 1995: for that reason, all events recorded at this station within this time period were not part of our analysis. Also note that a downside of our analysis is that it is mostly based on the positioning of the very first pulse. In the following, we consider a one-sample difference with respect to theoretical marks as acceptable and not as evidence of a timing error.

## WARNING!

The results presented in this section are based on the automatic analysis of the DCF signals and are only indicative. Although they constitute a general overview, it happens on rare occasions that well-synchronised records are wrongly flagged, and vice-versa. We therefore recommend that the users manually review the DCF signals of the records they are interested in.

Fig. 3.17 displays examples of DCF signals corresponding to the following situations:

<sup>&</sup>lt;sup>11</sup>Only the minute marks, and not the second marks, are recorded.



FIGURE 3.17: Example for DCF signals. Minute marks based on data time vector are represented by the vertical cyan lines. Green lines indicate a correct first second-pulse whereas red lines correspond to incorrect second-pulses. Detailed description available in the text.

- (a) example of a signal without timing problem. All flags are set to 0. The first pulse corresponds exactly to a second mark (vertical green line). The vertical dashed red line symbolises a missing second mark and occurs exactly 1 s before the minute mark (in cyan).
- (b) example of a signal where the first pulse corresponds exactly to a second mark (green), but the minute mark is delayed by one sample. Although this is hardly visible with the naked eye, other pulses also do not exactly match the theoretical second marks (vertical dashed red lines) and the flag for spurious pulses is therefore set to 1.
- (c) example of a signal where the first pulse corresponds exactly to a second mark (green), but the minute mark is delayed by 239 samples (i.e., almost 2 s). The erroneous minute marks are visible by eye and highlighted by the red arrows. Irregularities within the DCF signal are also noticeable (vertical dotted purple lines) and the flag for spurious pulses is therefore set to 1.
- (d) example of a signal where the first pulse is delayed by one sample with respect to the second (vertical red line), whereas the minute marks match exactly the minute.
- (e) example of a signal where both second and minute marks are consistently delayed by the same number of samples (29). Further irregularities are visible in addition.
- (f) similar to (e).

An overview of our analysis is presented in Fig. 3.18 as pie diagrams. They indicate that:

- (a) A large majority (>75%) of the first second-pulses coincides with a second. For the remaining cases, the histogram on the right demonstrates that most first pulses are only shifted by a single or a few (2-3) samples.
- (b) In contrast, a vast majority (>85%) of the minute marks does not coincide with a minute. However, similar to the previous point, the histogram shows that the differences are in general on the order of one or a few samples.
- (c) Half of the DCF signals contain irregular pulses.

To conclude, even if we consider, as written earlier, that a shift of a single sample of second or minute marks is not indicative of a timing issue, our analysis still reveals a few timing issues regarding the borehole data. These are summarised in Table B.14 in the appendix (p. 162). Moreover, in Fig. 3.19, DCF signal irregularities are represented as a function of time for each borehole station. For instance, it appears that ENM and FSW underwent several perturbations from 2005 on, while HWF or ZLV show erroneous signals in the period 1996 to 2002.

## Waveform plots

In this section, we review the waveform data timing differently, namely by plotting the waveforms in a similar fashion as for the accelerometer data. To this end, we take advantage of the flags defined via the analysis of the DCF signals in the previous section and define a colour code related to the <u>absolute</u> values of those flags:

• **black**: minute and second flags both  $\leq$  1, i.e. no time synchronisation issue;



FIGURE 3.18: Statistics of DCF signal analysis: (a) second marks, (b) minute marks and (c) presence of "spurious" pulses. For (a) and (b), histograms showing the distribution of pulse shifts in terms of number of samples are provided in addition (NB: 60 samples are equivalent to 0.5 s). Percentages as well as absolute numbers of records (in brackets) are indicated.



FIGURE 3.19: Second and minute flags (expressed in number of aberrant samples) over time for all borehole stations. Since the y-axis is limited to ±75 samples, larger differences are represented by vertical blue lines. Red vertical lines for ZL2 and ZLV correspond to the damage of the DCF receiver reported in appendix F of Dost et al., 2022.

- **purple**: second flag  $\leq$  1 and 1 < minute flag  $\leq$  10;
- grey: consistent delay of second and minute flags & (second flag > 1);
- **blue**:  $1 < \text{second flag} \le 10$  and minute flag  $\le 1$ ;
- **seagreen**: 1 < both second and minute flags ≤ 10;
- light red: both second and minute flags > 10, i.e. significant timing issue;
- light orange for FSW records before the 5<sup>th</sup> of May, 1996.

In addition, station names are written in white on light grey background if the spurious flag is 0; white on dark grey background if it is 1 and black on light grey if the flag has no value assigned.

By visually inspecting the waveform plots, we found that most records did not exhibit discernible timing issues (e.g. Fig. 3.20) or put differently, the potential timing issues detected while analysing the DCF signal are not easily recognisable in a waveform plot. This is particularly visible for the records corresponding to DCF examples (c) & (e) in Fig. 3.17, shown in Figs. B.92 and B.93 in the appendix (pp. 165). Since in both cases, only one additional borehole station detected the event, the precise event origin time cannot be deducted, meaning it may be highly uncertain.



FIGURE 3.20: Vertical component waveforms for the 31<sup>st</sup> January, 1999 event recorded on the 4<sup>th</sup> borehole level sorted according to the event-station distances. Data have been instrumentcorrected and filtered between 2 and 50 Hz. The event origin time is symbolised by the vertical orange dashed line. P-wave arrival times (if available) are plotted as vertical blue bars. Traces are coloured following the colour code described in the text.

#### Nevertheless, three types of issues could be determined:

- waveforms are clearly offset from the event origin time (occurs only for a single event, see Fig. 3.21a);
- picks from QuakeML not matching the waveforms (affects six events, see example in Fig. 3.21b);
- event origin time coinciding with the signal onset (affects three events, see example in Fig. 3.22); according to KNMI (pers. comm.), these events, located in the Roswinkel field, have been relocated, but the database was not yet updated accordingly.





Only two events were identified as having significant time synchronisation issues:

- 2001-08-07 17:09:01 at ZLV (see Fig. 3.23);
- 2003-08-20 08:46:14 at ENV (see Fig. 3.24); in this example, however, the event is not even visible on the record, so it may be of lesser importance.

## Summary

In our analysis, we disregarded shifts of second and minute marks of the DCF signal if they just comprised one sample. However, we found a few instances of timing issues of the data recorded on borehole stations. Not all potential DCF timing disruptions are readily detectable from seismogram sections and users should re-

Although assuming that a shift of just one sample in DCF signal second or minute marks is negligible, we detect a few significant timing issues. Users should check the DCF trace before using the data for arrivaltime dependent analyses.

view the DCF signal before using the data, especially if dealing with arrival-time sensitive methods such as event location. A further problem is that the knowledge on how to decode the amplitude and phase modulation of the DCF signal seems to have been lost within the seismological community.



FIGURE 3.22: VLW borehole three-component records for the 21<sup>st</sup> March, 1996 event. Data have been instrument-corrected and filtered between 2 and 50 Hz. Event origin time is symbolised by the vertical orange dashed line.

## 3.3.4 Conclusion

Borehole triggered data, due to the larger number of records, is partly easier to quality control than the accelerometer data.

Sensor orientation, for example, was the subject of a careful analysis in the past and the continuity of data acquisition until today allowed for a comparison to more recent borehole installations such as the G-network. The full analysis could not be repeated here, since we did not possess e.g. records of check shots. Instead, we demonstrate a simple approach to test the polarity of vertical components, which - if more records of teleseismic events are available - can also be used to track temporal changes.

Amplitudes seem to be mostly recorded correctly despite occasional malfunctioning of sensors and components that have occurred throughout the recording period. Together with KNMI's analysis (Dost et al., 2022), we demonstrate multiple ways of reviewing amplitudes and highlight periods in which measurements appear to be anomalous.

Finally, data timing does not seem to be problematic. However, the precise interpretation (and decoding) of DCF signals would help confirming this statement.



(a) Vertical component waveforms for the  $7^{\text{th}}$  August, 2001 event at 17:09:01 recorded on the  $4^{\text{th}}$ borehole level sorted according to the event-station distances.





FIGURE 3.23: Significant timing error identified for ZLV.



(a) Vertical component waveforms for the  $20^{\text{th}}$  August, 2003 event at 08:46:14 recorded on the  $4^{\text{th}}$ borehole level sorted according to the event-station distances.





FIGURE 3.24: Significant timing error identified for ENV.

# Public data availability and accessibility

As mentioned in the introduction, NORSAR's work was carried out in two phases, firstly on an offline dataset provided directly by KNMI and secondly, on the same dataset retrieved through the FDSN web service. All findings and figures presented in the previous sections are based on the online data set. Thus, all data used in the previous sections were downloaded from the KNMI FDSN server (http://rdsa.knmi.nl/, last accessed 19/08/2022) via ObsPy (Beyreuther et al., 2010). Waveform data, event data and station metadata could successfully be retrieved both for accelerometer and borehole stations. We provide related Python code snippets in the sections 4.1 and 4.2.

Below, we summarise findings related to accessibility and completeness of the online data that can be fixed by KNMI by the time this report is published. Corrections are partly necessary in KNMI's report and partly in the publicly available files:

## 1. Accelerometer data:

- Waveform data (miniSEED files)
  - > Time flags cannot be extracted. Since there is no easy solution (other than maybe contacting the Obspy developers), we provided some tips throughout this report.
- Station metadata (StationXML files)
  - > Orientation uncertainties are not stored.
  - > Instrument response units are wrong / not set.
- Event catalogue (QuakeML files)
  - > OK; occasionally, P-wave picks do not match the waveforms (see 4.2 and Fig. A.1).

## 2. Borehole data:

- Waveform data (miniSEED files)
  - > Waveform data could not be downloaded for event #500 (2009-02-26 01:22).
  - > DCF channels for FSW until 1996-05-05 are missing.
  - > Channels are named "N", "E", "Z" which is different from KNMI's naming in their report ("1", "2", "Z").
  - > WDB records for events #512, #513 and #518 have gaps and do not coincide with the timing of the DCF channel.
  - > no records for ZLV0 before 1996 could be downloaded (see also station metadata).
- Station metadata (StationXML files)
  - > FSW1 instrument response is wrong from 1996-05-05 to 2010-04.
  - > PPB polarity flip is not reported in the corresponding StationXML station file.

- > ZL2 end time is different in the online data (2009-04-10) as compared to the offline data that were first provided by KNMI and what is reported by Dost et al. (2022) (2010-05-18).
- > ZLV0 start time is different in the online data (1996-02-15) as compared to the offline data that were first provided by KNMI (1995-04-12); data could not be downloaded for that period.
- Event catalogue (QuakeML files): KNMI (pers. comm., see email 14-Jul-2022) identified three events with origin time issues
  - > event #6: 1995-04-26 (ZLV), origin time should be 17:33:49.
  - > event #415: 2007-03-11 (WDB ENM FSW ZLV), origin time is too late.
  - > event #485: 2008-12-24 (ZLV HWF ENV WDB VLW ENM FSW), origin time is ca. 27 s too early.

### 4.1 How to access the accelerometer data

```
1 # 1. READ CATALOGUE OF EVENTS
2 from obspy.core.event import read_events
3 cat = read_events("KNMI_catalogue_acc.xml") # catalogue name has to be adapted; could
       also be a text file based for example on Table 1 or Table A.2 of this report.
4
  # 2. DEFINE STATION LIST (here, for accelerometers)
5
6 list_acc = ["FRB2", "GARST", "HARK", "HKS", "KANT", "MID1", "MID2", "MID3", "STDM",
      "WIN", "WSE", "ZAN1", "ZAN2", "ROS1", "ROS2", "ROS3", "ROS4", "ROS5", "ROS6"]
8 list_sta_query = ",".join(list_acc)
g
10 # 3. CONNECT TO SERVER
11 from obspy.clients.fdsn import Client
12 client = Client("http://rdsa.knmi.nl")
14 # 4. LOOP OVER EVENTS AND GET WAVEFORM DATA
15 import numpy as np
16 for ev in cat:
      tstart = ev.origins[0].time
17
      try:
18
          # Fetching data: search for available data +/- 500 s around the event origin
19
      time
          st = client.get_waveforms("NL", list_sta_query, "*", "HG*", tstart-500,
20
     tstart+500)
          st.merge(method=1, fill_value=np.nan) # just in case, but not necessary in
21
      principle
          st.write("%s.mseed"%(tstart.strftime("%Y%m%d%H%M")), format="MSEED")
22
23
      except:
          continue
24
```

CODE SNIPPET 4.1: Fetching accelerometer waveform data

#### WARNING!

For accelerometer data, time flags are stored in the blockette 1001 of the miniSEED trace headers. The header is accessible only if the option "details" is set to True when reading a file. By default, this option is set to False, and cannot be changed through the entry parameters of "get\_waveforms" (line 22 of the code snippet). We modified the source code manually (line 850 in the ObsPy "client.py" function) such that the option is always set to True, thus enabling us to access the time flags. Time flags of individual records are also available in Table A.2, p. 77 of this report.

#### NOTE

We chose a sufficiently long time window around the event origin time to ensure that nonsynchronised data are included. However, note that two events (#36 and #37) occur within a short period (73 s) on the same day (2006-03-25) and that the records from station ROS4 belong to event #37.

```
1 # 1. DEFINE STATION LIST
2 list_acc = ["FRB2", "GARST", "HARK", "HKS", "KANT", "MID1", "MID2", "MID3", "STDM",
3 "WIN", "WSE", "ZAN1", "ZAN2", "ROS1", "ROS2", "ROS3", "ROS4", "ROS5", "ROS6"]
4
5 # 2. CONNECT TO SERVER
6 from obspy.clients.fdsn import Client
7 client = Client("http://rdsa.knmi.nl")
8
9 # 3. LOOP OVER STATIONS AND STORE XML FILES
10 # To store the instrument response, set level to "response"
11 for sta in list_acc:
12 client.get_stations(network="NL", station=sta, filename="%s.%s.xml"%(net,sta),
14 level="response")
```

CODE SNIPPET 4.2: Fetching accelerometer StationXML files

### 4.2 How to access the borehole data

```
1 # 1. READ CATALOGUE OF EVENTS: see Table B.1 of this report (p. 76-83).
2 import pandas as pd
3 df = pd.read_csv("list_events.csv")
4
5 # 2. DEFINE STATION LIST
6 list_bor = ["FSW*", "ENM*", "WDB*", "ZLV*", "ZL2*", "ENV*", "VLW*", "VBG*", "HWF*", "
0TL*", "PPB*", "WMH*"]
7 list_sta_query = ",".join(list_bor)
8
9 # 3. CONNECT TO SERVER
10 from obspy.clients.fdsn import Client
11 client = Client("http://rdsa.knmi.nl")
12
13 # 4. LOOP OVER EVENTS, GET WAVEFORM DATA AND FILL IN QUAKEML CATALOGUE
```

```
14 from obspy import UTCDateTime, Catalog
15 CAT = Catalog()
16 for iev, ev in df.iterrows():
      torig = UTCDateTime(ev.Origin_time)
17
      tstart = torig - ev.Left
18
      tend = torig + ev.Right
19
      try:
20
          st = client.get_waveforms("NL", list_sta_query, "*", "H*", tstart, tend)
21
          st.write("%s.mseed"%(torig.strftime("%Y%m%d%H%M")), format="MSEED")
22
          CAT = CAT + client.get_events(starttime=torig-120, endtime=torig+120,
23
      includeallorigins=True, includearrivals=True, includepicks=True)
      except:
24
          continue
25
26 CAT.write("catalogue_borehole_events.xml", format="QUAKEML")
```

CODE SNIPPET 4.3: Fetching borehole waveform data and event catalogue

## **Recommendations**

Apart from the recommendations mentioned in the previous chapters, we would like to propose an additional analysis to be performed.

## 5.1 QuakeML - event catalogue

Updating the QuakeML event files containing event metadata (i.e. source parameters as well as Pand S-wave picks, time residuals, etc.) was not part of the current project. However, it turned out in multiple occasions during our work that this information cannot be easily distinguished from the waveform data if they are released to the public.

Time synchronisation issues, for example, were sometimes difficult to assess as they could also be related to erroneous event origin times. We consider it crucial to update this information to ensure that end-users employ the most up-to-date and reliable event catalogue. In addition, we noticed that the information in the QuakeML database is not always stored in a consistent manner. The example in Fig. A.1 (p. 72) is a good illustration of this problem: it shows accelerometer data for which - although the records are not synchronised in time (**pink** traces) - (1) the P-wave arrival times (vertical blue lines) are consistent with waveform timing at FRB2 and HKS, but (2) not consistent for KANT and STDM.

Other issues concerning the QuakeML catalogue are related to epicentral distances that are not consistent with event and station locations when recomputed independently. After several exchanges with KNMI on that subject, it appears to us that they use a different database internally than the one publicly available.

Finally, a number of events occurs close in time and therefore, they are combined in a single file (see Table 1.3, p. 19). Metadata for these events must be correct in order for the end-user to be able to properly identify the individual events.

For all the aforementioned reasons, we strongly recommend that KNMI obtains a separate project by SodM to enable them to solve these issues and update the QuakeML files of all events (wherever necessary) to ensure consistency, at least with regard to event origin time and location.

## 5.2 Publication

We strongly encourage a publication of the analyses in a scientific paper, once that the QuakeML files have been corrected as well. To this end, KNMI's and NORSAR's approaches could be combined to

- promote the publication of this new, carefully evaluated data set for the Groningen field, potentially enabling users to extend their analyses in time;
- propose newly developed approaches to test historical (or partly also more recent) data sets.

## References

- Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann (2010). "ObsPy: a Python toolbox for seismology". In: Seismological Research Letters 81.3, p. 530.
- Bommer, J.J., B. Edwards, P.P. Kruiver, A. Rodriguez-Marek, P.J. Stafford, B. Dost, M. Ntinalexis, E. Ruigrok, and Spetzler J. (Dec. 2019). V6 Ground Motion Model (GMM) for induced seismicity in the Groningen field. NAM Report. Nederlandse Aardolie Maatschappij BV.
- Diephuis, G. and U. Asmussen (1995). KNMI arrays in Groningen and Drenthe. NAM Report.
- Dost, B. (2016). Evolution of the Groningen earthquake monitoring network and event catalogue. Mmax Expert Workshop, 8 10 March 2016, World Trade Centre, Schiphol Airport, the Netherlands.
- Dost, B. and H. Haak (2002). A comprehensive description of the KNMI seismological instrumentation. Tech. rep. KNMI.
- Dost, B., E. Ruigrok, and J. Spetzler (2017). "Development of seismicity and probabilistic hazard assessment for the Groningen gas field". In: Netherlands Journal of Geosciences 96.5, s235–s245.
- Dost, B., W. Zhou, and E. Ruigrok (2022). Quality assurance and publication of the KNMI 1995-2013 induced seismic data. Tech. rep. KNMI.
- Jepsen, D.C. and B.L.N. Kennett (1990). "Three-component analysis of regional seismograms". In: Bulletin of the Seismological Society of America 80.6, pp. 2032–2052.
- Kennett, B.L.N. and E.R. Engdahl (1991). "Traveltimes for global earthquake location and phase identification". In: Geophysical Journal International 105.2, pp. 429–465.
- KNMI (2019). Sensor orientation. Tech. rep. KNMI.
- NORSAR (June 2018). Review of the public KNMI induced earthquake catalogue from the Groningen gas field (report project phase 1, WP1: Catalogue review). KEM-11 Improving the earthquake catalogue in the Groningen region: WP1 18-004. NORSAR. DOI: 10.21348/p.2018.0001.
- Oye, V. and W.L. Ellsworth (2005). "Orientation of Three-Component Geophones in the San Andreas Fault Observatory at Depth Pilot Hole, Parkfield, California". In: Bulletin of the Seismological Society of America 95.2, pp. 751–758.
- Ruigrok, E., J. Domingo-Ballesta, G.-J. van den Hazel, B. Dost, and L. Evers (2019). "Groningen explosion database". In: First Break 37.8, pp. 37–41.

# **Appendix: Additional figures**

## A.1 Accelerometer waveform plots



FIGURE A.1: Accelerometer records for event #74: records which are not time synchronised are coloured pink. P-wave arrival times extracted from QuakeML are partly in agreement with the waveforms, even though not synchronised, partly not.
# A.2 Accelerometer orientation results

TABLE A.1: Individual orientation results.  $M_{L}$  is the event magnitude. d is the event-station distance.  $\beta$  is the back-azimuth. KNMI 1 and KNMI 2 are KNMI's orientation results for methods 1 and 2, respectively. The offset angle is measured between max(R·Z) and min(|T|). The last column indicates the particle motion linearity. Cells coloured in blue highlight records for which there are large discrepancies between results by NORSAR and KNMI using method 1 results. Red cells highlight records for which the offset angle is important (> 25°).

| Station | Origin time             | $M_{L}$ | $d  [\rm km]$ | β [°] | KNMI 1 [°] | KNMI 2 [°] | NORSAR [°] | Offset [°] | Linearity |
|---------|-------------------------|---------|---------------|-------|------------|------------|------------|------------|-----------|
| FRB2    | 2012-08-16 20:30:33.280 | 3.6     | 18.7          | 160   | 39         | 20         | 32         | 14         | 6.0       |
| GARST   | 2011-06-27 15:48:09.710 | 3.2     | 8.7           | 326   | 337        | 350        | 342        | 2          | 2.1       |
|         | 2012-08-16 20:30:33.280 | 3.6     | 3.7           | 48    | 376        | 385        | 356        | 2          | 3.1       |
|         | 2013-02-07 22:31:58.380 | 2.7     | 3.2           | 105   | 366        | -          | 27         | 32         | 2.4       |
|         | 2013-02-07 23:19:08.970 | 3.2     | 3.9           | 127   | 388        | 350        | 34         | 18         | 2.7       |
|         | 2013-02-09 05:26:10.050 | 2.7     | 3.0           | 273   | 324        | -          | 321        | 1          | 10.2      |
|         | 2013-09-04 01:33:32.170 | 2.8     | 4.7           | 304   | 345        | -          | 339        | 13         | 5.0       |
|         | 2014-02-13 02:13:14.320 | 3.0     | 4.7           | 285   | 322        | 360        | 322        | 9          | 6.7       |
| HKS     | 2006-08-08 05:04:00.050 | 3.5     | 8.8           | 138   | 333        | 330        | 334        | 13         | 4.9       |
|         | 2012-08-16 20:30:33.280 | 3.6     | 9.6           | 128   | 354        | 0          | 1          | 4          | 9.4       |
|         | 2013-09-04 01:33:32.170 | 2.8     | 5.9           | 171   | 332        | -          | 340        | 15         | 1.8       |
|         | 2014-02-13 02:13:14.320 | 3.0     | 7.2           | 178   | 396        | 40         | 36         | 2          | 8.5       |
| KANT    | 2012-08-16 20:30:33.280 | 3.6     | 3.6           | 350   | 80         | 70         | 69         | 73         | 2.3       |
| MID1    | 2008-10-30 05:54:29.080 | 3.2     | 5.3           | 283   | 34         | 0          | 30         | 40         | 1.7       |
|         | 2009-04-14 21:05:25.880 | 2.6     | 2.5           | 277   | 343        | 55         | 309        | 35         | 1.3       |
| MID3    | 2003-09-27 13:57:54.150 | 2.7     | 3.4           | 280   | 346        | 345        | 347        | 4          | 2.3       |
|         | 2003-11-10 00:22:38.030 | 3.0     | 4.2           | 318   | 319        | 340        | 321        | 21         | 1.5       |
|         | 2003-11-16 20:04:11.480 | 2.7     | 3.8           | 286   | 294        | 310        | 300        | 1          | 1.8       |
|         | 2006-08-08 05:04:00.050 | 3.5     | 3.3           | 276   | 290        | 275        | 287        | 3          | 2.6       |
|         | 2008-10-30 05:54:29.080 | 3.2     | 5.2           | 291   | 315        | 310        | 319        | 7          | 1.4       |
|         | 2009-04-14 21:05:25.880 | 2.6     | 2.4           | 294   | 287        | 310        | 286        | 5          | 1.5       |
| STDM    | 2012-08-16 20:30:33.280 | 3.6     | 3.9           | 160   | 54         | 60         | 71         | 18         | 1.6       |
| WIN     | 2008-10-30 05:54:29.080 | 3.2     | 3.4           | 148   | 42         | 370        | 38         | 30         | 1.9       |
|         | 2009-05-08 05:23:11.950 | 3.0     | 4.9           | 191   | 322        | 240        | 312        | 11         | 8.2       |
|         | 2011-06-27 15:48:09.710 | 3.2     | 2.8           | 288   | 23         | 40         | 33         | 75         | 1.2       |
|         | 2012-08-16 20:30:33.280 | 3.6     | 6.4           | 128   | 63         | 280        | 241        | 83         | 1.4       |
|         | 2013-07-02 23:03:55.500 | 3.0     | 3.2           | 307   | 29         | -          | 12         | 11         | 2.8       |
|         | 2013-09-04 01:33:32.170 | 2.8     | 4.1           | 204   | 269        | -          | 253        | 25         | 3.1       |
|         | 2014-02-13 02:13:14.320 | 3.0     | 5.7           | 204   | 316        | 320        | 315        | 15         | 3.8       |
| WSE     | 2009-04-14 21:05:25.880 | 2.6     | 2.0           | 91    | 350        | 355        | 174        | 50         | 1.7       |
|         | 2009-05-08 05:23:11.950 | 3.0     | 3.6           | 253   | 352        | 0          | 352        | 12         | 1.6       |
|         | 2011-06-27 15:48:09.710 | 3.2     | 6.9           | 312   | 67         | 60         | 57         | 14         | 2.4       |
|         | 2012-08-16 20:30:33.280 | 3.6     | 2.6           | 92    | 15         | 25         | 180        | 34         | 1.3       |
|         | 2013-02-07 23:19:08.970 | 3.2     | 5.8           | 150   | 66         | 40         | 234        | 48         | 1.3       |
|         | 2013-02-09 05:26:10.050 | 2.7     | 4.0           | 233   | 350        | 345        | 1          | 10         | 2.8       |
| ZAN1    | 2008-10-30 05:54:29.080 | 3.2     | 4.9           | 49    | 279        | 300        | 279        | 1          | 4.0       |
|         | 2011-06-27 15:48:09.710 | 3.2     | 7.0           | 354   | 237        | 260        | 62         | 2          | 6.0       |
|         | 2013-09-04 01:33:32.170 | 2.8     | 2.4           | 5     | 288        | -          | 287        | 35         | 1.4       |
| ZAN2    | 2003-11-10 00:22:38.030 | 3.0     | 5.6           | 51    | 56         | 55         | 129        | 42         | 1.4       |
|         | 2003-11-16 20:04:11.480 | 2.7     | 3.8           | 68    | 43         | 40         | 59         | 11         | 1.2       |
|         | 2006-08-08 05:04:00.050 | 3.5     | 3.9           | 79    | 8          | 350        | 23         | 13         | 2.4       |
|         | 2008-10-30 05:54:29.080 | 3.2     | 3.2           | 46    | 11         | 285        | 163        | 76         | 1.6       |
|         | 2011-06-27 15:48:09.710 | 3.2     | 6.4           | 340   | 34         | 35         | 32         | 14         | 17.1      |
| ROS1    | 1997-02-19 21:53:50.810 | 3.4     | 1.2           | 341   | 354        | 354        | 173        | 4          | 2.1       |
|         | 1998-01-28 21:33:03.840 | 2.7     | 1.3           | 331   | 378        | 350        | 14         | 20         | 3.5       |
|         | 1998-07-14 12:12:02.230 | 3.3     | 1.8           | 309   | 328        | 355        | 327        | 13         | 4.0       |
| ROS2    | 1998-01-28 21:33:03.840 | 2.7     | 1.4           | 166   | 81         | 45         | 69         | 29         | 1.2       |
|         | 1998-07-14 12:12:02.230 | 3.3     | 1.4           | 199   | 345        | 348        | 347        | 29         | 4.0       |
|         | 1999-12-31 11:00:55.330 | 2.8     | 1.6           | 184   | 347        | 26         | 11         | 89         | 1.1       |
|         | 2000-10-25 18:10:34.790 | 3.2     | 1.3           | 196   | 341        | 351        | 7          | 23         | 1.6       |
| ROS3    | 1998-01-28 21:33:03.840 | 2.7     | 1.8           | 76    | 351        | 345        | 351        | 27         | 1.5       |
|         | 1998-07-14 12:12:02.230 | 3.3     | 1.1           | 66    | 341        | 331        | 337        | 35         | 1.7       |
|         | 1999-12-31 11:00:55.330 | 2.8     | 1.3           | 84    | 345        | 338        | 174        | 89         | 1.1       |
|         | 2000-10-25 18:10:34.790 | 3.2     | 1.2           | 65    | 345        | 343        | 166        | 55         | 2.3       |
| ROS4    | 1999-12-31 11:00:55.330 | 2.8     | 1.3           | 84    | 103        | 80         | 84         | 13         | 1.1       |
|         | 2000-10-25 18:10:34.790 | 3.2     | 1.2           | 65    | 27         | 65         | 51         | 9          | 1.3       |
| ROS5    | 2002-02-14 17:01:04.740 | 2.1     | 0.9           | 75    | 331        | 310        | 337        | 17         | 1.6       |
| ROS6    | 2001-04-28 23:00:15.880 | 2.4     | 1.8           | 250   | 322        | 330        | 330        | 76         | 1.5       |

# A.3 Accelerometer RMS amplitudes per station



FIGURE A.2: RMS amplitudes in cm/s<sup>2</sup> measured on the first horizontal component as a function of time for each station. Station names are coloured black for AC-63 sensors, grey for AC-23 sensors and blue for Roswinkel stations. Red-bordered circles correspond to components reported as malfunctioning (see Table 3.2). Circles are coloured by event origin time and their size is scaled by the RMS window length. Y-axes limits are the same for all plots in order to ease the comparison.

Horizontal component 1



Horizontal component 2

FIGURE A.3: Same as Fig. A.2 for the second horizontal component.



Vertical component

FIGURE A.4: Same as Fig. A.2 for the vertical component.

# A.4 Accelerometer time flags

TABLE A.2: List of accelerometer records available for each event. Start and end record times are given as well as time flags. A time flag of 100 indicates a synchronised record while 0 indicates a non-synchronised record or an unknown state of synchronisation.

| Event ID | Station | Start time              | End time                | Time flag |
|----------|---------|-------------------------|-------------------------|-----------|
| 1        | ROS1    | 1996-12-06 16:44:50.496 | 1996-12-06 16:44:58.596 | 0         |
| 2        | ROS1    | 1996-12-28 18:14:26.531 | 1996-12-28 18:14:35.631 | 0         |
| 3        | ROS1    | 1997-01-16 00:12:42.420 | 1997-01-16 00:12:59.415 | 100       |
| 4        | ROS1    | 1997-02-19 21:53:46.695 | 1997-02-19 21:54:07.600 | 100       |
| 5        | ROS1    | 1997-05-19 15:43:52.260 | 1997-05-19 15:44:08.735 | 100       |
|          | ROS3    | 1997-05-19 15:43:52.180 | 1997-05-19 15:44:07.180 | 100       |
| 6        | ROS1    | 1997-06-20 00:45:34.650 | 1997-06-20 00:45:51.225 | 100       |
|          | ROS3    | 1997-06-20 00:45:34.445 | 1997-06-20 00:45:50.815 | 100       |
| 7        | ROS3    | 1997-07-09 06:23:08.005 | 1997-07-09 06:23:23.000 | 100       |
| 8        | ROS2    | 1997-08-18 04:42:25.835 | 1997-08-18 04:42:42.285 | 100       |
|          | ROS3    | 1997-08-18 04:42:25.750 | 1997-08-18 04:42:40.750 | 100       |
|          | ROS1    | 1997-08-18 04:42:25.790 | 1997-08-18 04:42:42.330 | 100       |
| 9        | ROS1    | 1997-08-18 05:17:29.250 | 1997-08-18 05:17:46.320 | 100       |
|          | ROS2    | 1997-08-18 05:17:29.250 | 1997-08-18 05:17:47.385 | 100       |
|          | ROS3    | 1997-08-18 05:17:29.215 | 1997-08-18 05:17:45.605 | 100       |
| 10       | ROS1    | 1998-01-28 21:32:59.770 | 1998-01-28 21:33:18.750 | 100       |
|          | ROS2    | 1998-01-28 21:32:59.805 | 1998-01-28 21:33:18.135 | 100       |
|          | ROS3    | 1998-01-28 21:33:01.580 | 1998-01-28 21:33:16.980 | 100       |
| 11       | ROS1    | 1998-01-28 22:34:00.340 | 1998-01-28 22:34:17.040 | 100       |
|          | ROS2    | 1998-01-28 22:34:00.360 | 1998-01-28 22:34:17.835 | 100       |
| 12       | ROS2    | 1998-07-14 12:11:59.220 | 1998-07-14 12:12:19.115 | 100       |
|          | ROS1    | 1998-07-14 12:11:59.310 | 1998-07-14 12:12:21.360 | 100       |
|          | ROS3    | 1998-07-14 12:11:59.170 | 1998-07-14 12:12:18.205 | 100       |
| 13       | ROS1    | 1999-03-12 19:06:41.500 | 1999-03-12 19:06:56.585 | 100       |
| 14       | ROS1    | 1999-03-17 23:14:22.520 | 1999-03-17 23:14:39.165 | 100       |
|          | ROS2    | 1999-03-17 23:14:22.420 | 1999-03-17 23:14:38.810 | 100       |
| 15       | ROS1    | 1999-05-06 18:13:54.925 | 1999-05-06 18:14:09.980 | 100       |
|          | ROS2    | 1999-05-06 18:13:54.870 | 1999-05-06 18:14:09.970 | 100       |
|          | ROS3    | 1999-05-06 18:13:53.250 | 1999-05-06 18:14:08.255 | 100       |
| 16       | ROS1    | 1999-05-14 18:30:17.775 | 1999-05-14 18:30:34.380 | 100       |
|          | ROS2    | 1999-05-14 18:30:17.805 | 1999-05-14 18:30:34.270 | 100       |
|          | ROS3    | 1999-05-14 18:30:17.675 | 1999-05-14 18:30:32.685 | 100       |
| 17       | ROS1    | 1999-05-15 19:28:27.400 | 1999-05-15 19:28:43.925 | 100       |
|          | ROS2    | 1999-05-15 19:28:28.860 | 1999-05-15 19:28:43.855 | 100       |
|          | ROS3    | 1999-05-15 19:28:27.320 | 1999-05-15 19:28:42.315 | 100       |
| 18       | ROS4    | 1999-12-31 11:00:52.650 | 1999-12-31 11:01:07.965 | 100       |
|          | ROS3    | 1999-12-31 11:00:51.320 | 1999-12-31 11:01:15.065 | 100       |
|          | ROS1    | 1999-12-31 11:00:51.315 | 1999-12-31 11:01:09.850 | 100       |

| Event ID | Station | Start time              | End time                | Time flag |
|----------|---------|-------------------------|-------------------------|-----------|
|          | ROS2    | 1999-12-31 11:00:51.340 | 1999-12-31 11:01:16.305 | 100       |
| 19       | ROS2    | 2000-01-07 14:19:04.105 | 2000-01-07 14:19:19.370 | 100       |
| 20       | ROS2    | 2000-03-27 10:23:19.470 | 2000-03-27 10:23:34.585 | 100       |
| 21       | ROS1    | 2000-10-25 18:10:30.830 | 2000-10-25 18:10:50.100 | 100       |
|          | ROS2    | 2000-10-25 18:10:30.725 | 2000-10-25 18:10:57.285 | 100       |
|          | ROS3    | 2000-10-25 18:10:30.760 | 2000-10-25 18:10:53.880 | 100       |
|          | ROS4    | 2000-10-25 18:10:32.145 | 2000-10-25 18:10:47.340 | 100       |
|          | ROS5    | 2000-10-25 18:10:30.630 | 2000-10-25 18:10:47.965 | 100       |
| 22       | ROS6    | 2001-04-28 23:00:11.970 | 2001-04-28 23:00:32.320 | 100       |
|          | ROS5    | 2001-04-28 23:00:11.775 | 2001-04-28 23:00:28.090 | 100       |
|          | ROS4    | 2001-04-28 23:00:13.160 | 2001-04-28 23:00:28.210 | 100       |
|          | ROS2    | 2001-04-28 23:00:11.925 | 2001-04-28 23:00:33.155 | 100       |
|          | ROS1    | 2001-04-28 23:00:12.030 | 2001-04-28 23:00:28.545 | 100       |
| 23       | ROS1    | 2002-02-14 17:01:02.055 | 2002-02-14 17:01:17.515 | 100       |
|          | ROS2    | 2002-02-14 17:01:00.690 | 2002-02-14 17:01:20.580 | 100       |
|          | ROS5    | 2002-02-14 17:01:02.030 | 2002-02-14 17:01:17.030 | 100       |
|          | ROS6    | 2002-02-14 17:01:00.535 | 2002-02-14 17:01:21.150 | 100       |
| 24       | ROS2    | 2002-10-14 23:45:19.915 | 2002-10-14 23:45:35.035 | 100       |
| 25       | ROS2    | 2002-12-24 02:57:19.900 | 2002-12-24 02:57:35.560 | 100       |
|          | ROS6    | 2002-12-24 02:56:41.461 | 2002-12-24 02:56:58.581 | 0         |
| 26       | MID1    | 2003-03-03 20:51:19.490 | 2003-03-03 20:51:34.490 | 100       |
|          | MID3    | 2003-03-03 20:51:18.750 | 2003-03-03 20:51:35.780 | 0         |
| 27       | MID3    | 2003-09-27 13:57:53.300 | 2003-09-27 13:58:08.365 | 0         |
| 28       | ROS1    | 2003-10-11 11:44:05.910 | 2003-10-11 11:44:20.905 | 100       |
|          | ROS2    | 2003-10-11 11:44:04.660 | 2003-10-11 11:44:22.435 | 100       |
| 29       | MID3    | 2003-11-10 00:22:34.335 | 2003-11-10 00:22:51.540 | 100       |
|          | ZAN2    | 2003-11-10 00:22:34.511 | 2003-11-10 00:22:52.241 | 0         |
| 30       | MID3    | 2003-11-16 20:04:09.895 | 2003-11-16 20:04:24.905 | 100       |
|          | ZAN2    | 2003-11-16 20:04:08.500 | 2003-11-16 20:04:25.700 | 0         |
| 31       | ROS1    | 2004-09-06 20:31:17.740 | 2004-09-06 20:31:32.775 | 100       |
|          | ROS2    | 2004-09-06 20:31:16.325 | 2004-09-06 20:31:32.805 | 100       |
|          | ROS6    | 2004-09-06 20:31:16.345 | 2004-09-06 20:31:32.750 | 100       |
| 32       | HKS     | 2006-01-18 08:12:42.704 | 2006-01-18 08:12:58.294 | 0         |
| 33       | HKS     | 2006-02-12 14:36:35.019 | 2006-02-12 14:36:50.109 | 0         |
| 34       | HKS     | 2006-03-21 14:50:30.209 | 2006-03-21 14:50:45.699 | 0         |
| 35       | HKS     | 2006-03-23 03:12:20.274 | 2006-03-23 03:12:35.464 | 0         |
| 36       | ROS1    | 2006-03-25 13:54:34.115 | 2006-03-25 13:54:51.115 | 100       |
|          | ROS2    | 2006-03-25 13:54:34.175 | 2006-03-25 13:54:53.900 | 100       |
|          | ROS6    | 2006-03-25 13:54:32.210 | 2006-03-25 13:55:09.650 | 100       |
| 37       | ROS1    | 2006-03-25 13:55:47.175 | 2006-03-25 13:56:03.635 | 100       |
|          | ROS2    | 2006-03-25 13:55:47.195 | 2006-03-25 13:56:04.530 | 100       |
|          | ROS4    | 2006-03-25 14:00:35.500 | 2006-03-25 14:00:50.525 | 0         |
|          | ROS6    | 2006-03-25 13:55:47.080 | 2006-03-25 13:56:04.990 | 100       |
| 38       | ZAN1    | 2006-08-08 05:03:58.250 | 2006-08-08 05:04:15.465 | 100       |

| Event ID | Station | Start time              | End time                | Time flag |
|----------|---------|-------------------------|-------------------------|-----------|
|          | ZAN2    | 2006-08-08 05:03:57.308 | 2006-08-08 05:04:19.568 | 0         |
|          | HKS     | 2006-08-08 05:04:01.094 | 2006-08-08 05:04:16.684 | 0         |
|          | MID3    | 2006-08-08 05:03:56.755 | 2006-08-08 05:04:17.230 | 100       |
| 39       | MID3    | 2006-08-08 09:49:21.875 | 2006-08-08 09:49:36.890 | 100       |
| 40       | ZAN2    | 2006-08-26 22:41:14.885 | 2006-08-26 22:41:31.845 | 100       |
| 41       | WSE     | 2006-10-23 13:38:02.175 | 2006-10-23 13:38:19.585 | 0         |
|          | ZAN2    | 2006-10-23 13:38:02.168 | 2006-10-23 13:38:19.028 | 0         |
| 42       | WSE     | 2007-01-26 00:20:05.336 | 2007-01-26 00:20:26.551 | 0         |
|          | ZAN2    | 2007-01-26 00:20:01.539 | 2007-01-26 00:20:18.344 | 0         |
| 43       | WSE     | 2007-05-14 12:19:19.760 | 2007-05-14 12:19:36.950 | 100       |
| 44       | ZAN2    | 2007-06-09 20:07:30.636 | 2007-06-09 20:07:47.411 | 0         |
| 45       | ZAN2    | 2008-05-18 13:23:44.270 | 2008-05-18 13:23:59.330 | 100       |
| 46       | ZAN1    | 2008-10-30 05:54:26.760 | 2008-10-30 05:54:43.480 | 100       |
|          | ZAN2    | 2008-10-30 05:54:25.191 | 2008-10-30 05:54:45.321 | 0         |
|          | WSE     | 2008-10-30 05:54:25.761 | 2008-10-30 05:54:53.476 | 0         |
|          | MID3    | 2008-10-30 05:54:28.165 | 2008-10-30 05:54:43.350 | 100       |
|          | WIN     | 2008-10-30 06:01:31.904 | 2008-10-30 06:01:46.909 | 0         |
|          | MID1    | 2008-10-30 05:54:26.597 | 2008-10-30 05:54:48.307 | 0         |
| 47       | ZAN2    | 2008-11-07 16:39:59.225 | 2008-11-07 16:40:14.265 | 100       |
| 48       | MID1    | 2008-12-15 20:41:13.055 | 2008-12-15 20:41:28.100 | 100       |
| 49       | WSE     | 2009-01-01 16:54:44.511 | 2009-01-01 16:54:59.511 | 0         |
|          | ZAN1    | 2009-01-01 16:54:42.830 | 2009-01-01 16:54:57.830 | 100       |
|          | ZAN2    | 2009-01-01 16:54:43.690 | 2009-01-01 16:54:58.705 | 0         |
| 50       | WSE     | 2009-01-08 01:16:57.589 | 2009-01-08 01:17:14.399 | 0         |
| 51       | WSE     | 2009-01-09 20:16:54.336 | 2009-01-09 20:17:11.201 | 0         |
| 52       | ZAN2    | 2009-02-01 04:23:20.220 | 2009-02-01 04:23:37.005 | 100       |
|          | ZAN1    | 2009-02-01 04:23:22.405 | 2009-02-01 04:23:37.580 | 100       |
|          | WSE     | 2009-02-01 04:23:20.382 | 2009-02-01 04:23:39.092 | 0         |
| 53       | MID1    | 2009-04-14 21:05:21.905 | 2009-04-14 21:05:42.480 | 100       |
|          | MID3    | 2009-04-14 21:05:23.775 | 2009-04-14 21:05:38.900 | 100       |
|          | WSE     | 2009-04-14 21:05:22.535 | 2009-04-14 21:05:45.025 | 0         |
| 54       | MID1    | 2009-05-08 05:23:11.465 | 2009-05-08 05:23:27.610 | 100       |
|          | WIN     | 2009-05-08 05:23:20.684 | 2009-05-08 05:23:38.289 | 0         |
|          | WSE     | 2009-05-08 05:23:08.281 | 2009-05-08 05:23:32.401 | 0         |
|          | ZAN1    | 2009-05-08 05:23:08.415 | 2009-05-08 05:23:26.675 | 100       |
|          | ZAN2    | 2009-05-08 05:23:08.773 | 2009-05-08 05:23:26.828 | 0         |
| 55       | WIN     | 2009-07-05 10:43:38.704 | 2009-07-05 10:43:53.774 | 0         |
| 56       | WIN     | 2009-12-04 04:15:21.864 | 2009-12-04 04:15:37.684 | 0         |
|          | HKS     | 2009-12-04 04:12:30.719 | 2009-12-04 04:12:46.009 | 0         |
| 57       | HKS     | 2010-02-19 23:12:49.729 | 2010-02-19 23:13:04.819 | 0         |
| 58       | ZAN1    | 2010-05-03 09:26:12.395 | 2010-05-03 09:26:29.275 | 100       |
| 59       | FRB2    | 2010-06-09 19:19:18.374 | 2010-06-09 19:19:35.209 | 0         |
| 60       | GARST   | 2010-08-14 07:43:17.089 | 2010-08-14 07:43:32.309 | 0         |
|          | KANT    | 2010-08-14 07:43:21.754 | 2010-08-14 07:43:36.939 | 0         |

| Event ID | Station | Start time              | End time                | Time flag |
|----------|---------|-------------------------|-------------------------|-----------|
|          | MID1    | 2010-08-14 07:43:19.265 | 2010-08-14 07:43:34.290 | 100       |
|          | WSE     | 2010-08-14 07:43:16.575 | 2010-08-14 07:43:33.760 | 100       |
|          | ZAN2    | 2010-08-14 07:43:18.820 | 2010-08-14 07:43:33.840 | 100       |
| 61       | WSE     | 2010-11-15 11:42:42.080 | 2010-11-15 11:42:58.865 | 100       |
| 62       | MID1    | 2011-01-19 19:39:27.960 | 2011-01-19 19:39:45.170 | 100       |
|          | MID3    | 2011-01-19 19:39:30.210 | 2011-01-19 19:39:45.215 | 100       |
|          | STDM    | 2011-01-19 19:39:30.014 | 2011-01-19 19:39:45.319 | 0         |
|          | WSE     | 2011-01-19 19:39:28.825 | 2011-01-19 19:39:45.860 | 100       |
| 63       | WSE     | 2011-03-26 20:45:50.335 | 2011-03-26 20:46:05.380 | 100       |
| 64       | FRB2    | 2011-05-12 16:44:25.709 | 2011-05-12 16:44:40.709 | 0         |
| 65       | WIN     | 2011-06-23 09:19:08.034 | 2011-06-23 09:19:23.179 | 0         |
|          | WSE     | 2011-06-23 09:14:42.995 | 2011-06-23 09:15:00.295 | 100       |
| 66       | ZAN1    | 2011-06-27 15:48:08.210 | 2011-06-27 15:48:29.175 | 100       |
|          | ZAN2    | 2011-06-27 15:48:06.645 | 2011-06-27 15:48:28.990 | 100       |
|          | WSE     | 2011-06-27 15:48:06.825 | 2011-06-27 15:48:38.000 | 100       |
|          | WIN     | 2011-06-27 15:52:34.834 | 2011-06-27 15:52:57.344 | 0         |
|          | MID1    | 2011-06-27 15:48:10.700 | 2011-06-27 15:48:31.110 | 100       |
|          | KANT    | 2011-06-27 15:46:28.869 | 2011-06-27 15:46:44.044 | 0         |
|          | HKS     | 2011-06-27 15:47:41.249 | 2011-06-27 15:48:08.739 | 0         |
|          | GARST   | 2011-06-27 15:48:10.079 | 2011-06-27 15:48:26.464 | 0         |
| 67       | WSE     | 2011-07-29 22:48:29.575 | 2011-07-29 22:48:46.450 | 100       |
| 68       | GARST   | 2011-08-31 06:23:56.704 | 2011-08-31 06:24:11.714 | 0         |
|          | WSE     | 2011-08-31 06:23:56.645 | 2011-08-31 06:24:14.335 | 100       |
|          | ZAN2    | 2011-08-31 06:23:57.670 | 2011-08-31 06:24:12.715 | 100       |
| 69       | WSE     | 2011-09-06 21:48:09.250 | 2011-09-06 21:48:24.320 | 100       |
| 70       | MID1    | 2011-09-25 12:59:00.045 | 2011-09-25 12:59:15.125 | 100       |
|          | WSE     | 2011-09-25 12:58:57.485 | 2011-09-25 12:59:13.210 | 100       |
| 71       | WSE     | 2011-12-30 06:20:08.805 | 2011-12-30 06:20:25.940 | 100       |
|          | GARST   | 2011-12-30 06:20:11.214 | 2011-12-30 06:20:26.219 | 0         |
|          | MID3    | 2011-12-30 06:20:10.485 | 2011-12-30 06:20:25.495 | 100       |
| 72       | GARST   | 2012-05-24 15:52:37.844 | 2012-05-24 15:52:52.854 | 0         |
| 73       | GARST   | 2012-08-15 19:17:32.779 | 2012-08-15 19:17:51.944 | 0         |
|          | MID1    | 2012-08-15 19:17:35.830 | 2012-08-15 19:17:51.535 | 100       |
|          | WIN     | 2012-08-15 19:20:24.469 | 2012-08-15 19:20:41.719 | 0         |
|          | WSE     | 2012-08-15 19:17:32.585 | 2012-08-15 19:17:57.505 | 100       |
| 74       | STDM    | 2012-08-16 20:29:55.434 | 2012-08-16 20:30:20.374 | 0         |
|          | WSE     | 2012-08-16 20:30:29.220 | 2012-08-16 20:31:06.920 | 100       |
|          | WIN     | 2012-08-16 20:33:22.674 | 2012-08-16 20:33:47.259 | 0         |
|          | KANT    | 2012-08-16 20:28:38.394 | 2012-08-16 20:29:03.129 | 0         |
|          | HKS     | 2012-08-16 20:29:12.159 | 2012-08-16 20:29:28.849 | 0         |
|          | GARST   | 2012-08-16 20:30:29.599 | 2012-08-16 20:30:54.729 | 0         |
|          | FRB2    | 2012-08-16 20:30:36.864 | 2012-08-16 20:30:53.449 | 0         |
|          | MID1    | 2012-08-16 20:30:29.150 | 2012-08-16 20:31:01.605 | 100       |
| 75       | HKS     | 2013-01-19 20:06:17.464 | 2013-01-19 20:06:34.754 | 0         |

| Event ID | Station | Start time              | End time                | Time flag |
|----------|---------|-------------------------|-------------------------|-----------|
|          | WIN     | 2013-01-19 20:10:07.379 | 2013-01-19 20:10:22.379 | 0         |
|          | WSE     | 2013-01-19 20:10:06.965 | 2013-01-19 20:10:21.965 | 100       |
| 76       | WSE     | 2013-02-07 22:31:55.125 | 2013-02-07 22:32:12.795 | 100       |
|          | GARST   | 2013-02-07 22:31:56.929 | 2013-02-07 22:32:12.154 | 0         |
|          | KANT    | 2013-02-07 22:29:14.594 | 2013-02-07 22:29:31.574 | 0         |
| 77       | WSE     | 2013-02-07 23:19:06.496 | 2013-02-07 23:19:28.871 | 0         |
|          | GARST   | 2013-02-07 23:19:07.424 | 2013-02-07 23:19:22.784 | 0         |
|          | KANT    | 2013-02-07 23:16:25.084 | 2013-02-07 23:16:46.949 | 0         |
| 78       | GARST   | 2013-02-09 05:26:08.534 | 2013-02-09 05:26:23.999 | 0         |
|          | WSE     | 2013-02-09 05:26:06.575 | 2013-02-09 05:26:28.235 | 100       |
| 79       | ZAN1    | 2013-07-02 23:03:58.480 | 2013-07-02 23:04:13.675 | 0         |
|          | WIN     | 2013-07-02 23:04:10.799 | 2013-07-02 23:04:30.924 | 0         |
| 80       | HKS     | 2013-09-04 01:28:51.494 | 2013-09-04 01:29:06.984 | 0         |
|          | WIN     | 2013-09-04 01:34:39.754 | 2013-09-04 01:34:56.564 | 0         |
|          | GARST   | 2013-09-04 01:33:29.899 | 2013-09-04 01:33:47.354 | 0         |
|          | ZAN1    | 2013-09-04 01:33:29.390 | 2013-09-04 01:33:46.830 | 0         |
| 81       | WIN     | 2013-10-02 20:25:57.616 | 2013-10-02 20:26:12.651 | 0         |
| 82       | HKS     | 2014-02-13 02:11:27.829 | 2014-02-13 02:11:43.219 | 0         |
|          | KANT    | 2014-02-13 02:12:27.079 | 2014-02-13 02:12:42.109 | 0         |
|          | GARST   | 2014-02-13 02:13:13.114 | 2014-02-13 02:13:28.824 | 0         |
|          | WIN     | 2014-02-13 02:16:22.409 | 2014-02-13 02:16:40.814 | 0         |

## **B.1** Borehole event catalogue

TABLE B.1: List of events recorded on borehole instruments. The last two columns indicate the length of the time window to consider before (left) and after (right) the event origin time to fully retrieve the waveform data. In the "Stations" column, only triggered stations are listed. From 2009 on, the triggered mode was progressively replaced by a continuous mode, i.e. more records than presented in this work may be available for the events occurring in this time period

| ID | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                                | Left [s] | Right [s] |
|----|-------------------------|----------|-----------|------------|-----------|-----------------------------------------|----------|-----------|
| 1  | 1995-01-24 09:38:39.190 | 53.3155  | 6.8967    | 3.0        | 1.26      | FSW                                     | 9        | 55        |
| 2  | 1995-01-31 19:47:55.620 | 53.0632  | 6.7200    | 3.0        | 2.04      | FSW                                     | 7        | 61        |
| 3  | 1995-02-01 00:31:32.000 | 53.0787  | 6.7750    | 3.0        | 1.20      | FSW                                     | 7        | 58        |
| 4  | 1995-03-21 16:37:44.340 | 53.4378  | 6.9133    | 3.0        | 1.07      | FSW                                     | 8        | 61        |
| 5  | 1995-04-06 08:03:43.450 | 53.3597  | 6.6800    | 3.0        | 1.99      | FSW                                     | 8        | 60        |
| 6  | 1995-04-26 17:35:49.640 | 53.0840  | 6.6683    | 3.0        | 0.69      | ZLV                                     | 141      | 72        |
| 7  | 1995-05-15 09:52:39.350 | 53.3090  | 6.9450    | 3.0        | 1.83      | FSW                                     | 10       | 54        |
| 8  | 1995-06-03 22:06:38.200 | 53.1898  | 6.3583    | 3.0        | 0.86      | HWF,ZLV                                 | 21       | 56        |
| 9  | 1995-06-20 08:59:40.120 | 52.8320  | 7.0298    | 2.0        | 2.71      | ENV,VLW,ZLV                             | 19       | 57        |
| 10 | 1995-07-15 16:05:39.140 | 53.2065  | 6.8233    | 3.0        | 1.03      | FSW,WDB,ZLV                             | 22       | 58        |
| 11 | 1995-07-21 23:24:40.480 | 53.2755  | 6.9633    | 3.0        | 1.10      | FSW,WDB                                 | 20       | 56        |
| 12 | 1995-09-13 21:34:36.830 | 53.3348  | 6.7283    | 3.0        | 1.09      | FSW,ZLV,WDB,ZL2                         | 19       | 60        |
| 13 | 1995-10-18 00:34:27.360 | 53.1293  | 6.4917    | 3.0        | 1.27      | HWF,ZLV,WDB,ZL2,ENV                     | 23       | 63        |
| 14 | 1995-11-02 01:07:00.710 | 53,3517  | 6,7183    | 3.0        | 1.64      | WDB.ZLV.ZL2.HWE.FSW                     | 21       | 60        |
| 15 | 1995-11-04 05:50:43.210 | 53,4698  | 6.7217    | 3.0        | 1.78      | ZLV.7L2                                 | 15       | 55        |
| 16 | 1995-11-20 02:20:54 730 | 53 3150  | 6 7617    | 3.0        | 1 13      | WDB ZI V ENV ESW                        | 19       | 60        |
| 17 | 1995-12-24 13:26:34 160 | 52 5108  | 4 8467    | 3.0        | 2.26      | OTI                                     | 22       | 52        |
| 18 | 1995-12-30 02:04:08 940 | 52,8453  | 7 0483    | 3.0        | 1 19      | ENV VI W                                | 19       | 54        |
| 10 | 1006 02 12 14:02:24 240 | 52.0455  | 6 7667    | 2.0        | 0.01      | ENM VI W WDB                            | 69       | 61        |
| 20 | 1990-02-12 14.02.24.240 | 52 7605  | 6 0.092   | 3.0        | 1 77      |                                         | 22       | 1/1       |
| 20 | 1990-02-24 03.31.07.300 | 52.7005  | 7.0620    | 1.5        | 0.99      | 1100F, VEW, EIVV, VBG, F3VV, ZEZ, EIVIV | 10       | 50        |
| 21 | 1996-02-25 15.55.09.500 | 52.0500  | 7.0620    | 1.5        | 0.88      |                                         | 19       | 50        |
| 22 | 1996-02-29 08.07.54.420 | 53.5425  | 7.0620    | 5.0        | 2.03      |                                         | 112      | 145       |
| 23 | 1996-03-06 09:20:50.200 | 52.8380  | 7.0620    | 1.5        | 1.56      |                                         | 211      | 145       |
| 24 | 1996-03-12 00:51:44.670 | 53.0637  | 6.7900    | 3.0        | 1.14      |                                         | 3/       | 100       |
| 25 | 1996-03-12 12:13:48.170 | 52.8376  | 7.0594    | 2.0        | 2.58      | ENM,ZLV,VLW,WDB,ZLZ,FSW,ENV             | 73       | 128       |
| 26 | 1996-03-12 18:34:12.680 | 53.0723  | 6.6533    | 3.0        | 0.75      | ZL2,ZLV                                 | /4       | 107       |
| 27 | 1996-03-14 22:23:58.300 | 52.8377  | 7.0641    | 2.0        | 1.09      | ZLV,VLW,ENV                             | 42       | 132       |
| 28 | 1996-03-16 04:16:32.770 | 53.2980  | 6.8483    | 3.0        | 1.36      | ENM,WDB,ZLV,ZL2,FSW                     | 38       | 95        |
| 29 | 1996-03-21 18:19:05.480 | 52.8332  | 7.0540    | 2.0        | 1.82      | ZLV,WDB,ZL2,ENV,VLW                     | 59       | 106       |
| 30 | 1996-04-01 18:53:45.190 | 52.9395  | 6.6083    | 3.0        | 0.62      | ZLV,WDB,ZL2,ENV,VLW                     | 89       | 95        |
| 31 | 1996-04-01 23:28:18.390 | 53.0673  | 6.7900    | 3.0        | 0.13      | ZLV,WDB,ZL2                             | 50       | 101       |
| 32 | 1996-04-09 13:58:34.430 | 53.0595  | 6.7983    | 3.0        | 1.10      | ZLV,WDB,ZL2                             | 41       | 114       |
| 33 | 1996-04-15 03:41:31.200 | 53.2893  | 6.6883    | 3.0        | 0.86      | WDB,ZLV,ENM,FSW                         | 111      | 60        |
| 34 | 1996-04-17 19:05:12.180 | 53.3573  | 6.8833    | 3.0        | 0.93      | WDB,ZL2,ENM,FSW                         | 110      | 87        |
| 35 | 1996-04-21 21:36:02.320 | 53.3758  | 6.5950    | 3.0        | 0.50      | ZLV,WDB,ENM                             | 93       | 126       |
| 36 | 1996-04-25 23:22:20.440 | 53.3558  | 6.8633    | 3.0        | 0.88      | ENM,ZL2,FSW                             | 110      | 91        |
| 37 | 1996-06-07 04:20:56.640 | 53.0850  | 6.7800    | 3.0        | 1.15      | ENM,ZL2,ZLV,WDB,VLW,ENV,FSW             | 62       | 129       |
| 38 | 1996-06-07 08:34:07.010 | 53.3088  | 6.7783    | 3.0        | 1.29      | ZLV,VLW,ENV,WDB,HWF,FSW                 | 113      | 130       |
| 39 | 1996-06-07 14:59:10.820 | 53.0823  | 6.8317    | 3.0        | 0.70      | ZL2,WDB,ZLV                             | 77       | 84        |
| 40 | 1996-06-16 02:53:27.880 | 52.9467  | 6.5683    | 3.0        | 1.65      | ZL2,ZLV,VBG,ENV,WDB,HWF,FSW,VLW,ENM     | 44       | 103       |
| 41 | 1996-07-03 21:40:07.160 | 53.0528  | 6.8033    | 3.0        | 0.84      | ZL2,ENV,HWF,WDB,ZLV                     | 116      | 107       |
| 42 | 1996-08-04 00:42:17.830 | 52.7243  | 6.7383    | 3.0        | 1.61      | ENM,FSW,VBG,VLW,HWF,ZL2,ENV,WDB,ZLV     | 109      | 159       |
| 43 | 1996-08-06 13:38:27.760 | 52.7555  | 6.9167    | 3.0        | 1.62      | ZLV,HWF,FSW,VBG,ENV,WDB,VLW             | 113      | 109       |
| 44 | 1996-08-09 02:31:45.710 | 53.0572  | 6.6883    | 3.0        | 0.28      | ZLV,ENV,WDB,FSW,HWF,ZL2                 | 61       | 126       |
| 45 | 1996-08-09 06:38:47.140 | 53.2868  | 6.9583    | 3.0        | 1.64      | HWF,VLW,ZL2,WDB,ENV,FSW,ENM             | 151      | 141       |
| 46 | 1996-08-11 01:10:16.250 | 52.6010  | 6.7817    | 3.0        | 0.65      | VBG,VLW,ZLV,ENV,HWF                     | 124      | 142       |
| 47 | 1996-08-25 22:24:11.140 | 52.9453  | 6.5700    | 3.0        | 1.71      | FSW,ZLV,ZL2,VBG,VLW,ENV,WDB,HWF,ENM     | 113      | 156       |
| 48 | 1996-09-02 05:20:51.920 | 53.1467  | 6.4217    | 3.0        | 2.10      | ZLV,ENV,FSW,VBG,VLW,ZL2,WDB,ENM         | 124      | 158       |
| 49 | 1996-10-16 05:09:00.100 | 52.9415  | 6.6100    | 3.0        | 1.26      | WDB,ZL2,VLW,ZLV,ENM,ENV,HWF             | 105      | 122       |
| 50 | 1996-11-16 03:33:49.870 | 53.3550  | 6.7550    | 3.0        | 1.32      | VLW,HWF,ENV,ENM,ZL2,WDB,ZLV,FSW         | 151      | 113       |
| 51 | 1996-11-17 04:59:52.050 | 52.7243  | 6.7317    | 3.0        | 2.24      | HWF,VBG,WDB,ZL2,ZLV,ENM,VLW,FSW,ENV     | 84       | 146       |
| 52 | 1996-11-30 20:26:57.950 | 53.1652  | 6.4100    | 3.0        | 1.04      | ENV,HWF,WDB,ZLV,ENM                     | 117      | 140       |
| 53 | 1996-12-06 16:46:48.000 | 52.8349  | 7.0532    | 1.5        | 1.58      | HWF,ENV,VLW,FSW,VBG,WDB,ZLV             | 113      | 117       |
| 54 | 1996-12-16 16:01:15.160 | 53.0718  | 6.8150    | 3.0        | 0.53      | VLW,ZLV,ZL2,HWF,ENV,FSW,WDB             | 102      | 126       |
| 55 | 1996-12-16 16:06:50.210 | 53.0777  | 6.8217    | 3.0        | -0.06     | WDB,VLW,ZLV,ZL2,ENV                     | 82       | 124       |
| 56 | 1996-12-26 19:52:05.570 | 53.2612  | 6.7650    | 3.0        | -0.17     | WDB                                     | 28       | 101       |
| 57 | 1996-12-28 00:54:08.570 | 53.1070  | 6.5050    | 3.0        | 1.94      | ZL2,ENM,VBG,ENV.VLW.WDB.ZLV.FSW.HWF     | 53       | 104       |
| 58 | 1996-12-28 18:16:52.900 | 52,8343  | 7,0432    | 2.0        | 2.74      | FSW,VBG,HWF,WDB,ZL2,VLW,ZLV,ENV FNM     | 105      | 183       |
| 59 | 1996-12-28 23:39:46.900 | 53,1105  | 6,5017    | 3.0        | 1.83      | WDB,ZL2,VLW,ZLV.ENV.ENM.FSW.VBG HWF     | 121      | 144       |
| 60 | 1997-01-08 01:20:54 490 | 53,3378  | 6,7133    | 3.0        | 1 50      | ENM.ZL2.ZLV.WDR VI W ENV HWE FSW VRG    | 122      | 144       |
| 61 | 1997-01-14 21:13:40 620 | 52,9430  | 6,5767    | 3.0        | 0.74      | ENV.VRG HWF WDR VI W 71 2 71 V          | 117      | 125       |
| 62 | 1997-01-16 00:12:46 600 | 52,8350  | 7 0456    | 2.0        | 2 42      | ENV VI W ZI V ESW HWE ENM VRG ZI 2 WDR  | 120      | 153       |
| 63 | 1997-01-24 04:00:04 540 | 53 0793  | 6 6783    | 3.0        | 0.64      | ENIV 71 2 71 V WDR ESW/ HW/E            | 65       | 76        |
| 00 |                         |          | 0.0705    | 5.0        | 0.04      |                                         | 55       | /0        |



| ID  | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                                 | Left [s] | Right [s] |
|-----|-------------------------|----------|-----------|------------|-----------|------------------------------------------|----------|-----------|
| 64  | 1997-02-17 07:20:55.230 | 53.3872  | 6.7517    | 3.0        | 1.60      | ENM,HWF,WDB,ENV,ZLV,FSW                  | 121      | 136       |
| 65  | 1997-02-17 11:16:00.470 | 52,9475  | 6.5683    | 3.0        | 1.15      | ENV.HWE.ZLV.ESW                          | 109      | 130       |
| 66  | 1007 02 10 21:52:50 700 | 52.5175  | 7 0294    | 2.0        | 2.25      |                                          | 124      | 208       |
| 60  | 1997-02-19 21.33.30.700 | 52.6323  | 7.0384    | 2.0        | 3.33      |                                          | 124      | 208       |
| 67  | 1997-02-26 19:31:22.430 | 52.6415  | 6.8033    | 3.0        | 1.20      | VBG,FSW,WDB,ZLV,VLW,ENV                  | 90       | 127       |
| 68  | 1997-03-02 15:25:32.540 | 53.2882  | 6.2667    | 3.0        | 1.30      | ZLV,HWF,ENV,ZL2,ENM,FSW,WDB,VLW          | 120      | 147       |
| 69  | 1997-03-08 14:29:04.280 | 53.1065  | 6.8150    | 3.0        | -0.75     | WDB,ZLV,HWF,ZL2                          | 80       | 100       |
| 70  | 1997-03-25 00:13:07.740 | 53.2515  | 6.7483    | 3.0        | -0.18     | WDB,ZLV                                  | 14       | 115       |
| 71  | 1997-04-01 00:34:19.040 | 52.7683  | 6.8733    | 3.0        | 1.40      | HWF,FSW,VLW,VBG,ENV,WDB,ZLV              | 101      | 125       |
| 72  | 1997-04-09 22:21:43.970 | 53,2003  | 6.8650    | 3.0        | 0.47      | ZLV.HWE.ENM.ESW.WDB                      | 115      | 121       |
| 73  | 1997-04-17 20:28:02 900 | 52 8340  | 7.0530    | 2.0        | 0.82      | VI W VBG                                 | 75       | 96        |
| 73  | 1007 04 20 10:10:46 240 | 52.0340  | 7.0000    | 2.0        | 1.40      |                                          | ,5       | 125       |
| 74  | 1997-04-29 18:16:46.340 | 53.2490  | 6.8033    | 3.0        | 1.40      | FSW,ENW,WDB,ZLV,VLW                      | 82       | 125       |
| /5  | 1997-05-04 02:42:39.740 | 53.3002  | 6.9300    | 3.0        | 1.09      | WDB,ENM,VLW,FSW,ZLV                      | 42       | 113       |
| 76  | 1997-05-04 04:29:09.850 | 53.1442  | 6.7367    | 3.0        | 0.79      | ENM, FSW, ENV, HWF, WDB, ZLV, VLW        | 132      | 171       |
| 77  | 1997-05-19 15:43:55.200 | 52.8358  | 7.0533    | 2.0        | 1.25      | ZLV,FSW,WDB,ENV,VLW,VBG                  | 84       | 173       |
| 78  | 1997-06-06 19:39:18.880 | 53.2925  | 6.8750    | 3.0        | 1.22      | WDB,HWF,FSW,ENM,ZLV                      | 105      | 106       |
| 79  | 1997-06-19 23:19:25.560 | 53.3638  | 6.7533    | 3.0        | 1.83      | HWF,VLW,WDB,VBG,FSW,ZLV,ZL2,ENM          | 109      | 157       |
| 80  | 1997-06-20 00:45:37.700 | 52.8313  | 7.0550    | 2.0        | 1.84      | WDB.VLW.VBG.ENM.ZLV.ENV.ZL2.FSW.HWF      | 86       | 113       |
| 81  | 1997-06-21 00:30:33 080 | 53 09/0  | 6 7517    | 3.5        | 1.88      | HWE ENIM 7L2 V/BG VI W ENIV W/DB 7LV ESW | 88       | 103       |
| 01  | 1007 07 17 03:56:30 710 | 53.0540  | 6 7167    | 3.5        | 0.72      |                                          | 80       | 110       |
| 82  | 1997-07-17 02:56:29.710 | 53.0607  | 6.7167    | 3.0        | -0.72     | ZLV,EINV,WDB,FSW,ZLZ                     | 89       | 118       |
| 83  | 1997-07-23 06:44:36.040 | 53.2467  | 6.7533    | 3.0        | 1.22      | FSW,VLW,WDB,ZLV,HWF,ENM                  | 111      | 146       |
| 84  | 1997-08-18 04:42:28.770 | 52.8343  | 7.0500    | 2.0        | 1.57      | FSW,ZL2,VBG,VLW,ENM,WDB,ENV,HWF          | 118      | 139       |
| 85  | 1997-08-18 05:17:32.250 | 52.8342  | 7.0500    | 2.0        | 2.07      | FSW,VBG,ZL2,VLW,ENM,WDB,ENV,HWF          | 45       | 151       |
| 86  | 1997-08-22 10:27:08.850 | 53.0632  | 6.8133    | 3.0        | 0.21      | ZLV,WDB,ZL2                              | 36       | 114       |
| 87  | 1997-08-23 00:01:56.530 | 53.0632  | 6.8133    | 3.0        | 0.55      | ZLV,ZL2                                  | 112      | 134       |
| 88  | 1997-08-23 19:39:35.040 | 53.2390  | 6.6833    | 3.0        | 1.63      | HWF.ENV.WDB.VLW.FSW.ENM                  | 120      | 137       |
| 80  | 1997-09-13 21-30-41 020 | 53 2380  | 6 7/67    | 3.0        | 1.08      |                                          | 122      | 125       |
| 00  | 1007 00 14 10:20:02 500 | 52.0455  | 6 7400    | 3.0        | 0.40      |                                          | 101      | 155       |
| 90  | 1997-09-14 19:39:02.590 | 53.0455  | 6.7400    | 3.0        | 0.40      |                                          | 101      | 156       |
| 91  | 1997-11-01 22:56:25.870 | 53.4267  | 6.7050    | 3.0        | 1.36      | WDB,VLW,FSW,HWF,ZLV,ENV,ENM              | 113      | 144       |
| 92  | 1997-11-03 18:12:48.770 | 53.1080  | 6.5133    | 3.0        | 1.41      | WDB,VLW,FSW,ZL2,ENV,HWF,ENM              | 119      | 138       |
| 93  | 1997-11-04 19:55:01.940 | 53.3278  | 6.7933    | 3.0        | 1.65      | WDB,ZLV,FSW,VLW,VBG,HWF,ZL2,ENV,ENM      | 108      | 132       |
| 94  | 1997-11-15 16:22:32.140 | 53.1042  | 6.8217    | 3.0        | 0.31      | ZL2,ZLV                                  | 54       | 93        |
| 95  | 1997-11-20 17:35:21.040 | 53.2063  | 6.7917    | 3.0        | 1.15      | ENV,ZL2,ENM,WDB,VLW,ZLV,FSW,HWF          | 69       | 128       |
| 96  | 1997-11-26 02:35:37 010 | 53 2543  | 6 7650    | 3.0        | 0.17      | 7L2 WDB FSW                              | 125      | 134       |
| 97  | 1997-12-03 14:47:19 710 | 53 2787  | 6 8967    | 3.0        | 1 78      | ZI V WDB ENM HWE ZI 2 ESW ENV            | 120      | 146       |
| 00  | 1007 12 03 15:01:03 650 | 53.2707  | 6 9592    | 3.0        | 1.70      |                                          | 102      | 115       |
| 98  | 1997-12-03 15:01:03.650 | 53.2437  | 6.8583    | 3.0        | 1.31      | HWF,VLW,ZLZ,FSW,ZLV,ENV,WDB,ENW          | 103      | 115       |
| 99  | 1997-12-07 07:02:44.490 | 53.0748  | 6.7017    | 3.0        | 0.33      | WDB,ZLZ,FSW,ZLV                          | 114      | 101       |
| 100 | 1997-12-23 06:21:32.110 | 53.3165  | 7.0150    | 3.0        | 1.25      | ENM,ZL2,VLW,FSW,WDB                      | 118      | 141       |
| 101 | 1998-01-08 08:11:45.260 | 52.9372  | 6.5967    | 3.0        | 1.20      | HWF,ZLV,ENV                              | 126      | 131       |
| 102 | 1998-01-22 10:31:55.150 | 52.9840  | 6.5467    | 3.5        | 1.08      | ENV                                      | 28       | 101       |
| 103 | 1998-01-28 21:33:02.900 | 52.8327  | 7.0417    | 2.0        | 2.68      | VLW,FSW,ZL2,ZLV,ENM,HWF,ENV,WDB,VBG      | 193      | 162       |
| 104 | 1998-01-28 22:34:03.400 | 52.8332  | 7.0367    | 2.0        | 1.98      | ENV.WDB.VBG.FSW.ZL2.ZLV.VLW.ENM.HWF      | 96       | 161       |
| 105 | 1008 01 21 08:20:20 260 | 52 2265  | 6 7450    | 2.0        | 0.72      |                                          | 112      | 120       |
| 105 | 1998-01-31 08:39:39:200 | 53.2305  | 0.7450    | 3.0        | 1.00      |                                          | 00       | 130       |
| 106 | 1998-02-05 21:11:49.340 | 53.2905  | 6.9350    | 3.0        | 1.09      | ENM,2LV,WDB,VLW,FSW                      | 99       | /5        |
| 107 | 1998-02-15 07:24:16.420 | 53.3558  | 6.7733    | 3.0        | 2.64      | WDB,ZLV,VBG,FSW,ENV,HWF,ZL2,ENM,VLW      | 123      | 134       |
| 108 | 1998-03-29 06:06:40.520 | 53.3447  | 6.7300    | 3.0        | 1.31      | ENM,HWF,VLW,WDB,ZLV,FSW                  | 7        | 263       |
| 109 | 1998-04-19 08:00:12.080 | 53.3388  | 6.7233    | 3.0        | 1.54      | ENV,ZL2,HWF,WDB,FSW,ZLV,ENM              | 128      | 129       |
| 110 | 1998-04-19 15:32:35.720 | 53.4245  | 6.6817    | 3.0        | 1.62      | ENM,WDB,FSW,ZL2,ENV,ZLV,HWF              | 77       | 140       |
| 111 | 1998-04-28 02:02:25.270 | 53.1073  | 6.8650    | 3.0        | 0.41      | ZLV,ZL2                                  | 50       | 112       |
| 112 | 1998-04-30 01:08:41 720 | 53 1967  | 6 7067    | 3.0        | 0.85      | ZI V FSW HWE ENM ZI 2 WDB                | 30       | 103       |
| 113 | 1998-05-18 22:03:42 460 | 53 4038  | 6 7317    | 3.0        | 1 34      | VIW ENIM HWE ZI V ESW WDB                | 138      | 146       |
| 114 | 1008 05 20 00:42:15 140 | 53.4030  | 0.7517    | 5.0        | 0.01      |                                          | 100      | 140       |
| 114 | 1990-03-30 09:43:15.140 | 55.2035  | 0.7767    | 3.0        | 0.91      | EINV, HWF, FSW, ZLV, WDB, ENM            | 122      | 156       |
| 115 | 1998-07-14 12:12:02.230 | 52.8325  | 7.0533    | 2.0        | 3.26      | WDB,HWF,ZLV,VBG,ENM,ENV,FSW,VLW          | 113      | 144       |
| 116 | 1998-08-14 19:25:16.890 | 53.1920  | 6.8033    | 3.0        | 1.12      | ZLV,ZL2,FSW,WDB,ENV,ENM,VLW,HWF          | 103      | 115       |
| 117 | 1998-08-24 04:28:58.000 | 53.2978  | 6.8100    | 3.0        | 2.44      | ENM,FSW,ENV,ZLV,VLW,HWF                  | 67       | 133       |
| 118 | 1998-09-05 20:36:11.240 | 52.7422  | 6.8750    | 3.0        | 1.91      | ZL2,WDB,ZLV,VBG,ENV,HWF,ENM,VLW,FSW      | 97       | 119       |
| 119 | 1998-10-04 03:28:32.970 | 53.3528  | 6.7483    | 3.0        | 0.95      | WDB,FSW,ENV,ENM                          | 102      | 118       |
| 120 | 1998-10-20 21:32:05.000 | 52.9740  | 6.6067    | 3.0        | 0.83      | VBG,WDB,ENV,FSW.HWF.ZLV.ENM VLW          | 100      | 76        |
| 121 | 1998-11-01 17:48:20 500 | 52 95/15 | 6 5717    | 3.0        | 1 30      | ENV WDR VI W ZI V ENM ESW HWE VPC        | 121      | 1/10      |
| 122 | 1008 12 12 07:51:20 520 | 52.5545  | 6,6092    | 3.0        | 1.56      |                                          | 117      | 140       |
| 122 | 1990-12-12 07.91:39.520 | 53.5917  | 0.0983    | 3.0        | 1.95      |                                          | 117      | 140       |
| 123 | 1998-12-26 23:48:02.190 | 53.2145  | 6.8300    | 3.0        | 1.60      | HWF,ENV,ZLZ,WDB,ZLV,ENM,FSW,VLW          | 83       | 123       |
| 124 | 1999-01-11 09:36:09.100 | 52.8370  | 7.0570    | 2.0        | 1.14      | HWF,WDB,ENV,VLW,VBG                      | 108      | 149       |
| 125 | 1999-01-13 19:36:37.030 | 53.3590  | 6.7767    | 3.0        | 2.09      | VLW,ZL2,WDB,ENM,ZLV,ENV,HWF,VBG          | 103      | 194       |
| 126 | 1999-01-31 04:53:00.590 | 53.2550  | 6.8250    | 3.0        | 0.44      | HWF,ENV,ENM,VBG,WDB,ZLV,FSW              | 123      | 134       |
| 127 | 1999-03-05 19:00:40.230 | 53.1013  | 6.7917    | 3.0        | 1.01      | ZL2, ENV, HWF, ZLV, WDB, VLW, FSW        | 120      | 143       |
| 128 | 1999-03-06 05:56:39.960 | 53,3247  | 6.7783    | 3.0        | 1.60      | VBG.VLW.ENM.HWE.ENV.WDB.ZLV.ZL2.ESW      | 108      | 149       |
| 129 | 1999-03-12 19:06:42 970 | 52 8328  | 7 0515    | 2.0        | 1 30      | VLW FSW FNV HWF VRG 7I V WDR FNM         | 120      | 162       |
| 120 | 1000 02 17 22:14:25 400 | 52,0020  | 7.0515    | 2.0        | 1.50      |                                          | 120      | 162       |
| 150 | 1000 04 24 40 52 55 440 | 52.0520  | 7.0317    | 2.0        | 1.50      |                                          | 120      | 152       |
| 131 | 1999-04-21 10:59:56.440 | 53.3120  | 6.8400    | 3.0        | 1.38      | HWF,ZLV,VLW,FSW,ENV,ENM,ZL2,WDB          | 86       | 171       |
| 132 | 1999-04-22 22:58:02.900 | 53.1115  | 6.1517    | 3.0        | 1.04      | VBG,VLW,FSW,ENM,ZL2,HWF,ZLV,WDB,ENV      | 123      | 139       |
| 133 | 1999-05-06 18:13:56.320 | 52.8357  | 7.0550    | 2.0        | 1.42      | FSW,WDB,VBG,VLW,ENV                      | 102      | 103       |
| 134 | 1999-05-08 20:40:18.930 | 53.3250  | 6.7000    | 3.0        | 1.56      | VLW,ENV,ENM,FSW,ZLV,WDB,HWF,ZL2          | 110      | 147       |
| 135 | 1999-05-14 18:30:20.730 | 52.8343  | 7.0517    | 2.0        | 1.70      | VLW,ENV,ENM,FSW,ZL2,VBG,HWF,ZLV,WDB      | 118      | 142       |
| 136 | 1999-05-15 19:28:30.360 | 52.8343  | 7.0517    | 2.0        | 1.38      | ZLV,ZL2,VBG,ENV,VLW,FSW.WDB.HWF.ENM      | 116      | 141       |
| 137 | 1999-05-21 00.00.38 860 | 53 1645  | 6 8150    | 3.0        | 0.68      |                                          | 71       | 100       |
| 120 | 1000-06-07 20:20:21 200 | 53 0073  | 6 4017    | 3.0        | 1.05      |                                          | 110      | 202       |
| 120 | 1000 07 07 00:02:11 200 | 53.0575  | 6.007     | 5.0        | 1.05      |                                          | 110      | 102       |
| 139 | 1000 00 10 00:01 10:01  | 52.9503  | 0.0207    | 3.0        | 1.30      | ZLZ,HWYF,VLVV,EINV,ZLV,WDB               | 58       | 120       |
| 140 | 1999-08-10 23:24:18.310 | 53.3818  | 6.7267    | 3.0        | 1.40      | wdb,zlv,FSW,ENM,ZL2                      | 122      | 135       |
| 141 | 1999-08-11 01:18:00.960 | 53.3462  | 6.7017    | 3.0        | 0.71      | ENM,WDB,ZLV,FSW                          | 76       | 181       |



| ID   | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                                    | Left [s] | Right [s] |
|------|-------------------------|----------|-----------|------------|-----------|---------------------------------------------|----------|-----------|
| 142  | 1999-09-07 17:16:23.540 | 53.0682  | 6.7950    | 3.0        | 1.53      | FSW,ENV,ZLV,VLW,HWF,ZL2,WDB                 | 149      | 161       |
| 143  | 1999-09-07 19:47:51 090 | 53 0572  | 6 8133    | 3.0        | 0.47      | WDB FSW ENV ZI V VI W HWE ZI 2              | 182      | 136       |
| 145  |                         | 53.0372  | 6.7100    | 5.0        | 0.41      |                                             | 102      | 150       |
| 144  | 1999-10-18 18:56:09.540 | 53.0775  | 6./183    | 3.0        | 0.41      | WDB,HWF,ENV,ZLV,VLW,ZLZ,FSW                 | 141      | 152       |
| 145  | 1999-10-18 18:57:55.400 | 53.0605  | 6.6783    | 3.0        | 0.31      | ZL2,FSW,WDB,HWF,ENV,ZLV,VLW                 | 169      | 138       |
| 146  | 1999-10-22 13:19:16.770 | 52,9410  | 6.5917    | 3.0        | 1.71      | ENV.ZLV.VLW.ZL2.FSW.ENM.HWE.VBG.WDB         | 116      | 141       |
| 147  | 1000 12 08 05:20:28 470 | E2 1702  | 6 9017    | 2.0        | 0.29      |                                             | 77       | 126       |
| 147  | 1999-12-08 03.39.28.470 | 55.1792  | 0.8017    | 3.0        | 0.28      | 2L2, WDD, F3W, IWF, 2LV, VLW                | //       | 120       |
| 148  | 1999-12-09 09:38:00.050 | 53.2465  | 6.8033    | 3.0        | 1.12      | WDB,ENM,ZL2,FSW,ENV                         | 125      | 155       |
| 149  | 1999-12-09 09:52:12.960 | 53.1833  | 6.7983    | 3.0        | 1.01      | ENV,WDB,ENM,ZLV,FSW                         | 128      | 129       |
| 150  | 1999-12-10 06:13:32.010 | 53,1745  | 6.7917    | 3.0        | 1.40      | ENV.ZLV.HWE.FSW.WDB.VBG.ZL2.ENM.VLW         | 120      | 149       |
| 151  | 1000 12 20 12:20:20 000 | 52 2522  | 6 7100    | 2.0        | 1 47      |                                             | 100      | 142       |
| 151  | 1999-12-20 12:29:29.690 | 53.3523  | 6.7100    | 3.0        | 1.47      | VBG,ENM,FSW,WDB,HWF,ENV,VLW,ZLV             | 180      | 142       |
| 152  | 1999-12-21 04:52:37.740 | 53.1900  | 6.7650    | 3.0        | 0.98      | ENM,VBG,HWF,FSW,VLW,ZLV,ENV,WDB             | 137      | 130       |
| 153  | 1999-12-24 23:52:41.120 | 53.3200  | 6.9467    | 3.0        | 1.81      | ENV, HWF, ZL2, VBG, VLW, ZLV, ENM, FSW, WDB | 119      | 141       |
| 154  | 1000 12 21 11:00:55 220 | 52 9252  | 7 0 4 9 2 | 2.0        | 2 00      |                                             | 05       | 164       |
| 154  | 1999-12-51 11:00:55:550 | 52.0552  | 7.0405    | 2.0        | 2.00      |                                             | 55       | 104       |
| 155  | 2000-01-07 14:19:06.760 | 52.8342  | 7.0433    | 2.0        | 1.10      | VBG,ENV,ZLV,VLW,FSW                         | 93       | 66        |
| 156  | 2000-01-10 04:18:07.460 | 53.0770  | 6.6550    | 3.0        | 0.60      | HWF,FSW,WDB,ENV,ZLV,ZL2                     | 91       | 128       |
| 157  | 2000-02-12 19:48:10.610 | 53.3210  | 6.8217    | 3.5        | 1.67      | ZLV.VLW.ZL2.ENM.ENV.WDB.HWF.FSW.VBG         | 91       | 135       |
| 150  | 2000 02 10 16:12:26 080 | E2 2429  | 6 6092    | 2.0        | 1 5 6     |                                             | 102      | 127       |
| 150  | 2000-03-13 10.13.30.080 | 33.3428  | 0.0983    | 3.0        | 1.50      |                                             | 105      | 127       |
| 159  | 2000-04-01 03:13:51.380 | 52.6847  | 6.7500    | 3.0        | 1.30      | ZL2,ENV,VLW,FSW,VBG,ZLV                     | 117      | 144       |
| 160  | 2000-04-08 11:07:29.680 | 53.2047  | 6.6317    | 3.0        | 1.17      | FSW,ZL2,VLW,HWF,WDB,ENM                     | 98       | 94        |
| 161  | 2000-04-08 21:13:17.800 | 53,3702  | 6.8450    | 3.0        | 1.12      | FSW.ZL2.VLW.HWE.WDB.ENM                     | 95       | 96        |
| 1(2) | 2000 04 14 22:07:47 700 | 52.2077  | 610100    | 2.0        | 1.21      |                                             | 117      | 140       |
| 162  | 2000-04-14 23:07:47.790 | 53.3077  | 6.//1/    | 3.0        | 1.21      | EINIVI,FSVV,ZLZ,VLVV                        | 117      | 140       |
| 163  | 2000-05-16 01:11:14.730 | 53.3805  | 6.7100    | 3.0        | 1.89      | ZLV,WDB,ENM,FSW,HWF                         | 54       | 83        |
| 164  | 2000-06-09 17:03:47.280 | 53.0868  | 6.8133    | 3.0        | 1.07      | HWF,VLW,ENV,FSW,ZLV,WDB,ENM,VBG,ZL2         | 129      | 128       |
| 165  | 2000-06-11 04-12-20 130 | 53,3480  | 6,7633    | 3.0        | 2.03      | ZL2.WDB.HWE.ENV FNM VBG VI W FSW ZI V       | 108      | 151       |
| 160  | 2000 06 12 15:40:22 012 | 52 2200  | 6 7 4 1 7 | 3.0        | 2.05      |                                             | 110      | 145       |
| 100  | 2000-06-12 15:48:23.010 | 53.3398  | 0.7417    | 3.0        | 2.55      | WDB,EINIVI,VBG,ZLZ,HWF,FSW,VLW,ENV,ZLV      | 112      | 145       |
| 167  | 2000-06-15 01:42:24.950 | 53.2803  | 6.8467    | 3.0        | 2.45      | ENV,WDB,ZLV,VBG,ENM,VLW,ZL2,FSW,HWF         | 5        | 135       |
| 168  | 2000-07-06 23:09:56.720 | 53.3398  | 6.7517    | 3.0        | 1.19      | ZLV,WDB,ENM,HWF,FSW.VLW                     | 106      | 240       |
| 169  | 2000-07-10 15:05:49 120 | 53 0643  | 6 5750    | 3.0        | 1.04      |                                             | 111      | 150       |
| 105  | 2000-07-10 13:03:49:120 | 33.0043  | 0.3730    | 3.0        | 1.04      |                                             |          | 150       |
| 170  | 2000-07-13 08:41:52.430 | 53.0788  | 6.5650    | 3.0        | 1.12      | HWF,WDB,ENV,ZL2,ZLV                         | 124      | 133       |
| 171  | 2000-07-16 01:34:12.000 | 53.3665  | 6.7817    | 3.0        | 1.54      | ENM,HWF,FSW,WDB,ZLV,VLW                     | 24       | 108       |
| 172  | 2000-09-22 17:05:16.770 | 53.0757  | 6.8200    | 3.0        | 0.98      | WDB.FSW.ENV.ZL2.ZLV.VLW                     | 93       | 132       |
| 172  | 2000 00 22 20:52:06 400 | E2 0917  | 6 7022    | 2.0        | 2.16      |                                             | 105      | 150       |
| 1/5  | 2000-09-22 20.52.06.400 | 55.0617  | 0.7955    | 5.0        | 2.10      | F3VV,EINIVI,EINV,HVVF,ZLZ,ZLV,VLVV,VVDB,VBG | 105      | 152       |
| 174  | 2000-09-23 03:47:47.430 | 53.0807  | 6.7883    | 2.7        | 0.96      | ENV,WDB,ENM,ZL2,ZLV,VBG,HWF,VLW,FSW         | 111      | 121       |
| 175  | 2000-10-25 18:10:34.790 | 52.8318  | 7.0517    | 2.3        | 3.20      | ZL2,ENM,ENV,FSW,VLW,ZLV,WDB,VBG,HWF         | 112      | 200       |
| 176  | 2000-11-12 02:16:36 270 | 52 9773  | 6 6083    | 3.0        | 0.31      | HWE 7L2 ENV VLW                             | 9        | 124       |
| 477  | 2000 11 12 02:10:30:270 | 52.5775  | 6.0005    | 5.0        | 0.51      |                                             | 105      | 127       |
| 1//  | 2000-11-29 16:06:48.390 | 52.6257  | 6.7417    | 3.0        | 1.63      | ENV,VLW,VBG,ZLV                             | 106      | 127       |
| 178  | 2000-12-23 05:20:06.170 | 53.1080  | 6.8117    | 3.0        | 0.36      | HWF,ENV,ENM,WDB,ZLV,ZL2,FSW,VLW             | 129      | 218       |
| 179  | 2000-12-26 16:33:57.640 | 53.2943  | 6.9100    | 3.0        | 1.38      | ZL2.ZLV.HWF.ENV.WDB.ENM.VLW.FSW.VBG         | 122      | 179       |
| 100  | 2001 02 26 11:20:07 210 | E2 0722  | 6 9217    | 2.0        | 0.77      |                                             | 07       | 114       |
| 160  | 2001-02-26 11.39.07.310 | 55.0725  | 0.0217    | 5.0        | 0.77      | ZLV,WDB,ZLZ                                 | 0/       | 114       |
| 181  | 2001-03-18 04:14:20.680 | 53.2433  | 6.6917    | 3.0        | 1.61      | ZLV,HWF,ENM,ENV,ZL2,VBG,VLW,WDB,FSW         | 151      | 106       |
| 182  | 2001-04-28 10:00:08.290 | 52.9482  | 6.5667    | 3.0        | 1.54      | ENV,VLW,WDB,FSW,ENM,ZL2,HWF,ZLV             | 46       | 213       |
| 183  | 2001-04-28 10:00:55 510 | 52 9590  | 6 5750    | 3.0        | 1.08      | ENV VI W WDB FSW ENM ZI 2 HWE ZI V          | 93       | 166       |
| 103  | 2001 04 20 10:00:55:510 | 52.5550  | 7.0522    | 5.0        | 1.00      |                                             | 107      | 242       |
| 184  | 2001-04-28 23:00:15.880 | 52.8332  | 7.0533    | 2.0        | 2.36      | VBG,HWF,ZLV,FSW,VLW,VVDB,ENV,ENM            | 107      | 212       |
| 185  | 2001-05-17 07:48:15.470 | 53.1730  | 6.6117    | 3.0        | 1.41      | ZL2,VLW,ZLV,VBG,WDB,FSW,ENM,ENV             | 110      | 149       |
| 186  | 2001-06-10 03:35:33.200 | 53.0490  | 6.7533    | 3.0        | 0.48      | HWF,WDB,ZLV,ENV,ZL2                         | 155      | 121       |
| 187  | 2001-06-19 06:49:55 570 | 53 0788  | 6 8200    | 3.0        | 0.97      |                                             | 133      | 124       |
| 107  | 2001-00-19 00:49.95.970 | 55.0700  | 0.0200    | 5.0        | 0.57      | 220,222,000                                 | 155      | 124       |
| 188  | 2001-06-21 03:50:49.050 | 53.2953  | 6.8000    | 3.0        | 1./3      | ENM,FSW,ENV,VBG,ZL2,WDB,HWF,VLW             | 116      | 141       |
| 189  | 2001-08-07 17:09:01.500 | 53.0970  | 6.8450    | 3.0        | 0.32      | WDB,ZLV                                     | 96       | 51        |
| 190  | 2001-09-09 06:58:12.520 | 52,6510  | 4,7133    | 2.0        | 3.48      | OTLVBG.ENV.ENM.HWE.VLW.WMH.PPB.WDB.FSW.ZLV  | 86       | 168       |
| 101  | 2001 00 10 04:20:15 420 | E2 6E26  | 4 7110    | 2.0        | 2.20      |                                             | 111      | 201       |
| 191  | 2001-09-10 04:30:15.430 | 52.6526  | 4.7118    | 2.0        | 3.20      | OTL,FSW,VBG,PPB,EINV,WWH,EINW,HWF,VLW       | 111      | 201       |
| 192  | 2001-10-10 06:41:09.360 | 52.6818  | 4.6483    | 2.9        | 2.70      | VLW,ENV,WMH,OTL,VBG,WDB,FSW,PPB,HWF,ENM     | 175      | 187       |
| 193  | 2001-10-10 14:06:43.350 | 53.2390  | 6.7633    | 3.0        | 0.99      | ZLV,ENV,HWF,VLW,WDB,FSW                     | 156      | 178       |
| 194  | 2001-10-10 14:06:57 240 | 53 2397  | 6 7633    | 3.0        | 0.75      | ZI V ENV HWE VI W WDB ESW                   | 170      | 164       |
| 105  | 2001 10 10 14:00:57:240 | 53.2337  | 7.055     | 5.0        | 0.75      |                                             | 170      | 104       |
| 195  | 2001-11-12 14:33:15.3/0 | 33.0945  | 7.3/6/    | 3.0        | 1.36      | VLVV,FSVV,WDB,HWF,ENV,ENM                   | 129      | 129       |
| 196  | 2001-12-04 19:08:31.060 | 53.2042  | 6.7850    | 3.0        | 0.19      | FSW,VLW,HWF,ZLV,ENM,WDB,VBG,ENV             | 133      | 126       |
| 197  | 2001-12-04 19:08:37.830 | 53.2042  | 6.7850    | 3.0        | -0.01     | FSW,VLW,HWF,ZLV,ENM,WDB,VBG,ENV             | 140      | 120       |
| 198  | 2001-12-04 22:33:37.960 | 53.2098  | 6.7433    | 3.0        | 1.02      | VLW, HWF, ZLV, ENM, WDB, VBG, ENV FSW       | 150      | 142       |
| 100  | 2001 12 11 15:17:17 (20 | 52 21 67 | 6 7000    | 2.0        | 0.74      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,        | 21       | 100       |
| 199  | 2001-12-11 15:17:17.620 | 53.2167  | 0.7883    | 3.0        | 0.71      | WDB                                         | 21       | 108       |
| 200  | 2001-12-20 01:25:42.980 | 53.0805  | 6.8383    | 3.0        | 0.47      | ZLV                                         | 25       | 104       |
| 201  | 2001-12-25 23:28:11.710 | 53.3972  | 6.6817    | 3.0        | 1.14      | VLW,ENM,FSW,WDB,ZLV,VBG,ENV                 | 92       | 100       |
| 202  | 2001-12-26 12:36:53 070 | 53 0565  | 6 8050    | 3.0        | -0.21     | WDB 7I V ENV ESW VI W ENM                   | 123      | 134       |
| 202  | 2001 12 20 12:30:35:070 | 53.0505  | 0.0050    | 5.0        | 0.21      |                                             | 125      | 134       |
| 203  | 2002-02-05 10:30:39.740 | 53.3190  | 6./16/    | 3.0        | 2.21      | VBG,ENV,WDB,ENM,HWF,VLW,FSW,ZLV             | 94       | 113       |
| 204  | 2002-02-14 17:01:04.740 | 52.8315  | 7.0350    | 2.0        | 2.07      | HWF,WDB,VBG,FSW,ZLV,VLW,ENV                 | 125      | 156       |
| 205  | 2002-02-27 03:52:14.030 | 53.3370  | 6.8267    | 3.0        | 1.14      | WDB.ENM.FSW.ZLV                             | 114      | 146       |
| 206  | 2002-03-17 02-16-27 000 | 53 0022  | 6 5 4 2 2 | 2.0        | 0.42      |                                             | 120      | 127       |
| 200  | 2002-03-17 02.16:27.900 | 55.0933  | 0.5433    | 3.0        | 0.43      | FSVV,EINIVI,ZLV,VLVV,HVVF,VVDB,ENV          | 128      | 13/       |
| 207  | 2002-04-14 01:11:44.490 | 53.0718  | 6.7867    | 3.0        | 1.73      | WDB,VLW,FSW,HWF,ZLV,ENM,VBG,ENV             | 84       | 54        |
| 208  | 2002-05-10 10:33:48.950 | 53.3783  | 6.8567    | 3.0        | 1.67      | HWF,VLW,FSW,ZLV,ENM,WDB                     | 120      | 137       |
| 209  | 2002-05-11 10.07.23 220 | 52 9432  | 6 5800    | 3.0        | 1 48      | HWF FNV VI W 7I V WDB ESW                   | 118      | 139       |
| 210  | 2002 05 22 42:20 42 042 | E2 05 C0 | 0.0000    | 3.0        | 0.00      |                                             | 10       | 100       |
| 210  | 2002-05-22 13:38:13.040 | 52.9560  | 6.5850    | 3.0        | 0.96      | ZLV,ENV,HWF,VBG                             | 18       | 123       |
| 211  | 2002-06-28 03:06:47.380 | 52.9680  | 6.4500    | 3.0        | 1.80      | WDB,ZLV,FSW,HWF,VLW,VBG                     | 75       | 56        |
| 212  | 2002-07-18 05:31:16.830 | 53.1878  | 6.7833    | 3.0        | 1.64      | HWF,ZLV,FSW,WDB.VLW.ENM.ENV.VBG             | 115      | 184       |
| 213  | 2002-07-27 15:01:08 620 | 52 9470  | 6 5650    | 3.0        | 1.62      |                                             | 168      | 165       |
| 213  |                         | 52.5470  | 0.5050    | 5.0        | 0.02      |                                             | 100      | 105       |
| 214  | 2002-08-05 19:28:10.160 | 53.0552  | 6.6567    | 3.0        | 0.86      | ENV,VLW,WDB,HWF,ZLV,FSW                     | 124      | 133       |
| 215  | 2002-08-29 21:13:22.740 | 53.2468  | 6.7467    | 3.0        | 0.01      | FSW,ZLV,WDB                                 | 116      | 146       |
| 216  | 2002-09-05 00:00:21.450 | 52.5075  | 6.5633    | 3.0        | 0.89      | ENV.VLW VBG                                 | 26       | 107       |
| 217  | 2002-09-06 06:07:05 500 | 53 1122  | 6 9/17    | 2.0        | 0.60      | 71////00                                    | 112      | 110       |
| 21/  | 2002-03-00 00.07.03.300 | 53.1125  | 0.0417    | 5.0        | 0.60      |                                             | 115      | 110       |
| 218  | 2002-09-22 07:13:33.430 | 53.0562  | 6.6800    | 3.0        | 0.58      | WDB,ZLV                                     | 98       | 127       |
| 219  | 2002-09-22 07:30:13.810 | 53.0348  | 6.6383    | 3.0        | 0.47      | ZLV                                         | 107      | 22        |
|      |                         |          |           |            |           |                                             |          |           |



| ID  | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                            | Left [s] | Right [s] |
|-----|-------------------------|----------|-----------|------------|-----------|-------------------------------------|----------|-----------|
| 220 | 2002-10-12 02:32:13.630 | 53.1065  | 6.8150    | 3.0        | 0.86      | HWF,ENV,WDB,ZLV                     | 50       | 83        |
| 221 | 2002-10-14 23:45:22.510 | 52.8340  | 7.0450    | 2.0        | 0.94      | ENV.ZLV.VLW.FSW.VBG                 | 150      | 107       |
| 222 | 2002-10-19 18:03:39 /30 | 53.0678  | 6 7683    | 1.8        | 1 28      | ESW ZLV WDB HWE VBG VLW             | 120      | 137       |
| 222 | 2002-10-13 10:03:33:430 | 53.0070  | 0.7005    | 1.0        | 1.20      |                                     | 120      | 157       |
| 223 | 2002-12-14 00:13:24.620 | 52.6765  | 6.8317    | 3.0        | 1.38      | WDB,FSW,HWF,ENM,VLW,ZLV,ENV         | 41       | 91        |
| 224 | 2002-12-16 12:23:39.090 | 53.0917  | 6.7183    | 3.0        | 1.38      | FSW,ENV,VLW,WDB,ZLV,HWF             | 100      | 129       |
| 225 | 2002-12-17 00:23:18.740 | 53.2908  | 6.8600    | 3.0        | 0.88      | FSW,ENV,HWF,ZLV,ENM,VLW,WDB         | 124      | 138       |
| 226 | 2002-12-18 20:31:09.150 | 53.1753  | 6.8467    | 3.0        | 0.77      | HWF,WDB,ZLV,ENM,ENV,FSW             | 111      | 146       |
| 227 | 2002-12-24 02:57:22.580 | 52.8325  | 7.0417    | 2.0        | 1.43      | VBG,WDB,VLW,ZLV,ENV                 | 23       | 108       |
| 228 | 2003-01-01 19:16:15.310 | 53,3375  | 6.7433    | 3.0        | 0.96      | ENM.WDB.HWE.ZLV.ENV.FSW             | 103      | 154       |
| 220 | 2002 01 12 02:45:45 500 | 52 0709  | 6 /122    | 2.0        | 1.66      |                                     | 04       | 20        |
| 229 | 2003-01-13 02.43.43.300 | 52.9708  | 0.4133    | 3.0        | 1.00      |                                     | 100      | 172       |
| 230 | 2003-01-18 18:12:43.320 | 53.2872  | 6.7700    | 3.0        | 1.05      | VLVV,2LV,FSVV,VVDB,EINIVI,HVVF      | 100      | 172       |
| 231 | 2003-01-23 07:46:16.660 | 53.3070  | 6.7517    | 3.0        | 1.65      | ENV,WDB,VLW,HWF,ZLV,FSW,ENM         | 154      | 124       |
| 232 | 2003-01-30 01:27:30.240 | 53.3417  | 6.7933    | 3.0        | 1.51      | ENM,WDB,VLW,HWF,ZLV                 | 7        | 126       |
| 233 | 2003-01-31 15:20:47.780 | 53.2322  | 6.7817    | 3.0        | 0.32      | ZLV,WDB,HWF                         | 46       | 118       |
| 234 | 2003-02-02 09:32:23.690 | 52.9502  | 6.5883    | 3.0        | 1.96      | ENV,WDB,VLW,VBG,ENM,ZLV,FSW,HWF     | 153      | 127       |
| 235 | 2003-02-06 19:25:24 910 | 53 2593  | 6 7683    | 3.0        | 0.32      | WDB HWE ENM 7LV ESW                 | 121      | 138       |
| 236 | 2003-02-11 10:20:40 560 | 53 3525  | 6 7733    | 3.0        | 1 35      | ESW/ HWE ENV/ ENM VI W ZI V/ WDB    | 119      | 150       |
| 230 | 2003-02-11 15:25:45:500 | 53.3523  | 6.0117    | 5.0        | 1.55      |                                     | 115      | 150       |
| 257 | 2003-02-12 06.22.20.020 | 55.2022  | 0.0117    | 5.0        | 0.80      | FSW,ZLV,HWF,EINI,WDB                | 115      | 156       |
| 238 | 2003-02-14 06:54:24.140 | 53.1458  | 6.1217    | 3.0        | 1.82      | ENM,VLW,ENV,WDB,ZLV,HWF,FSW         | 106      | 151       |
| 239 | 2003-02-28 21:54:18.190 | 53.3548  | 6.7300    | 3.0        | 0.70      | WDB,HWF,FSW,ENM,ZLV                 | 92       | 86        |
| 240 | 2003-03-03 20:51:21.890 | 53.3603  | 6.6617    | 3.0        | 2.17      | HWF,ENV,VBG,ENM,FSW,VLW,ZLV,WDB     | 118      | 155       |
| 241 | 2003-03-06 20:15:18.670 | 53.1408  | 6.7533    | 3.0        | 0.94      | ENV,FSW,ENM,VLW,WDB,ZLV,HWF         | 149      | 146       |
| 242 | 2003-03-09 05:31:26.700 | 53,3718  | 6.6400    | 3.0        | 1.06      | WDB.FSW.ENM.HWF                     | 65       | 91        |
| 2/3 | 2003-03-23 16:00:03 100 | 53 4573  | 6 7833    | 3.0        | 1 / 8     | WDB HWE ZI V ESW VI W ENIM ENIV     | 82       | 175       |
| 245 | 2003-03-23 10:00:03:100 | 53.4375  | 6.6917    | 3.0        | 0.42      |                                     | 102      | 70        |
| 244 | 2003-03-29 21:09:01.440 | 53.2375  | 6.6817    | 3.0        | 0.42      | FSVV,ZLV,VVDB,HVVF                  | 103      | 79        |
| 245 | 2003-04-01 00:25:52.090 | 53.3637  | 6.8517    | 3.0        | 0.35      | ZLV,FSW,WDB                         | 20       | 110       |
| 246 | 2003-04-02 20:19:48.740 | 53.3398  | 6.7183    | 3.0        | 1.90      | VLW,FSW,ENV,ZLV,WDB,HWF             | 101      | 88        |
| 247 | 2003-04-05 16:49:48.330 | 53.2092  | 6.6300    | 3.0        | 0.33      | FSW,WDB,ENM                         | 153      | 134       |
| 248 | 2003-04-06 00:07:50.700 | 53.2715  | 6.7950    | 3.0        | 0.07      | ENM,FSW,WDB                         | 91       | 41        |
| 249 | 2003-04-06 00:57:27.900 | 53,2045  | 6.7500    | 3.0        | 1.03      | ENV.VLW.ENM.ESW.WDB.HWE             | 124      | 136       |
| 250 | 2003-04-06 23:02:04 370 | 53 2060  | 6 7633    | 3.0        | 0.71      | VI W ENM ENV ZI V WDB HWE           | 108      | 187       |
| 250 | 2003-04-00 23.02.04.370 | 53.2000  | 0.7033    | 3.0        | 0.71      |                                     | 100      | 107       |
| 251 | 2003-04-16 16:20:42.530 | 53.2813  | 6.7750    | 3.0        | 0.68      | WDB,ZLV,ENM,FSW,VLW                 | 168      | 131       |
| 252 | 2003-04-18 23:59:55.000 | 53.2382  | 6.7533    | 3.0        | 0.00      | ZLV,ENM,FSW,WDB                     | 79       | 133       |
| 253 | 2003-04-20 00:19:39.190 | 53.2465  | 6.7500    | 3.0        | 0.10      | WDB,FSW,ZLV,ENM                     | 31       | 101       |
| 254 | 2003-04-28 21:56:11.330 | 53.2835  | 6.7267    | 3.0        | 1.00      | ZLV,ENV,WDB,HWF,ENM,FSW,VBG,VLW     | 103      | 156       |
| 255 | 2003-04-29 02:55:04.920 | 53.2837  | 6.7300    | 3.0        | 1.28      | HWF,ENV,WDB,ENM,FSW,VBG,VLW,ZLV     | 13       | 119       |
| 256 | 2003-05-14 20:52:15.910 | 53,2537  | 6.8650    | 3.0        | 0.76      | FSW.ZLV.ENV.HWE.ENM.WDB.VLW         | 140      | 152       |
| 257 | 2003-05-14 22:23:46 520 | 53 2565  | 6 8467    | 3.0        | 0.77      | WDB VI W FSW FNV ZI V HWF FNM       | 168      | 131       |
| 257 | 2003 05 14 22:23:40:320 | 53.2303  | 6.7650    | 3.0        | 1 11      |                                     | 116      | 151       |
| 250 | 2003-05-21 04.57.09.240 | 53.0717  | 0.7050    | 3.0        | 1.11      |                                     | 110      | 150       |
| 259 | 2003-05-23 02:59:50.860 | 53.0842  | 6.8233    | 3.0        | 0.56      | ZLV,WDB,FSW                         | 1/1      | 89        |
| 260 | 2003-05-31 23:12:25.730 | 53.2468  | 6.8750    | 3.0        | 0.77      | ZLV,ENM,FSW,WDB                     | 120      | 137       |
| 261 | 2003-06-03 16:15:38.910 | 53.3365  | 6.6833    | 3.0        | 1.45      | ZLV,FSW,WDB,HWF,ENM                 | 121      | 161       |
| 262 | 2003-06-06 14:27:16.470 | 53.2250  | 6.6817    | 3.0        | 0.68      | VLW,ENM,ZLV,FSW,HWF,WDB             | 57       | 119       |
| 263 | 2003-06-08 05:30:47.240 | 53.1918  | 6.7883    | 3.0        | 1.02      | FSW,VLW,ENV,ENM,HWF,WDB,ZLV         | 121      | 149       |
| 264 | 2003-06-08 08:14:16.550 | 53,2708  | 6.7367    | 3.0        | 1.47      | WDB.ZLV.FSW.VLW.ENV.ENM.HWF         | 101      | 110       |
| 265 | 2003-06-16 00:44:17 120 | 52 9630  | 6 4067    | 2.6        | 2.26      | ENV WDB ZI V VI W ESW VBG ENM       | 102      | 159       |
| 205 | 2003-00-10 00.44.17.120 | 52.9030  | 0.4007    | 2.0        | 2.20      |                                     | 102      | 155       |
| 266 | 2003-08-05 18:45:08.490 | 52.9747  | 0.5583    | 3.0        | 1.11      | EINV                                | //       | 52        |
| 267 | 2003-08-07 08:24:21.120 | 53.3495  | 6.7583    | 3.0        | 1.66      | ENM,FSW,WDB,ZLV                     | 115      | 142       |
| 268 | 2003-08-07 10:56:39.850 | 53.3447  | 6.7483    | 3.0        | 1.30      | WDB,ZLV,ENM,FSW                     | 77       | 109       |
| 269 | 2003-08-20 08:46:14.990 | 53.1063  | 6.8150    | 3.0        | 0.50      | WDB,ENV,ZLV                         | 126      | 131       |
| 270 | 2003-08-25 04:24:55.000 | 53.1077  | 6.7917    | 3.0        | 0.71      | WDB,ZLV                             | 25       | 124       |
| 271 | 2003-08-25 10:05:35.890 | 53.1077  | 6.7950    | 3.0        | 0.90      | WDB,ZLV                             | 114      | 35        |
| 272 | 2003-09-22 17:50:11 500 | 53 3952  | 6 6883    | 3.0        | 2 36      | WDB FSW ZI V ENV VI W HWE VBG       | 114      | 145       |
| 272 | 2003-09-27 13:57:54 150 | 53 3/78  | 6 6967    | 3.0        | 2.50      |                                     | 12/      | 160       |
| 273 | 2002 10 11 11.44.00 240 | 52 0252  | 7 0550    | 5.0        | 2.71      |                                     | 124      | 140       |
| 274 | 2003-10-11 11.44:08.340 | 52.0555  | 7.0550    | 2.0        | 1.01      |                                     | 124      | 140       |
| 2/5 | 2003-10-24 01:52:41.160 | 53.2950  | 6.7917    | 3.0        | 2.95      | EINIVI,EINV,VBG,WDB,ZLV,VLW,HWF,FSW | 118      | 150       |
| 276 | 2003-10-26 09:17:00.140 | 53.3040  | 6.7883    | 3.0        | 1.22      | FSW,ENM,VLW,HWF,ZLV,WDB             | 118      | 164       |
| 277 | 2003-10-29 14:30:09.260 | 53.1917  | 6.7833    | 3.0        | 0.98      | ZLV,ENM,FSW,VLW,HWF,WDB             | 76       | 120       |
| 278 | 2003-11-10 00:22:38.030 | 53.3253  | 6.6900    | 3.0        | 2.99      | VLW,HWF,FSW,OTL,VBG,ENM,WDB,PPB,ENV | 83       | 178       |
| 279 | 2003-11-10 02:40:55.010 | 53.3492  | 6.7100    | 3.0        | 1.43      | ENM, VLW, HWF. WDB. ENV. FSW. VBG   | 113      | 157       |
| 280 | 2003-11-16 20:04.11 480 | 53.3437  | 6.7017    | 3.0        | 2.67      | ZLV, HWE VLW FSW WDB FNM VBG FNV    | 203      | 173       |
| 281 | 2003-12-26 10:00:59 020 | 52 2107  | 6 8017    | 2.0        | 1 /1      |                                     | 122      | 125       |
| 201 | 2002 12 20 10.05.30.330 | 52 2420  | 6.0202    | 5.0        | 1.41      |                                     | 107      | 155       |
| 282 | 2005-12-29 13:09:59.310 | 55.5428  | 0.9383    | 3.0        | 1.47      | wDB,VLW,ZLV,FSW,ENM                 | 107      | 159       |
| 283 | 2004-01-12 01:05:47.910 | 53.1887  | 6.7450    | 3.0        | 1.58      | ZLV,VLW,ENV,FSW,WDB,HWF,ENM         | 112      | 147       |
| 284 | 2004-01-24 13:53:44.540 | 53.2710  | 6.7200    | 3.0        | 0.95      | WDB,ENM,FSW,HWF,ZLV,VLW             | 114      | 96        |
| 285 | 2004-01-30 11:47:40.990 | 53.3138  | 6.8683    | 3.0        | 1.17      | ZLV,WDB,FSW,VLW,ENM                 | 157      | 119       |
| 286 | 2004-03-07 07:18:30.450 | 53.1028  | 6.8450    | 3.0        | 0.16      | WDB,ZLV                             | 37       | 95        |
| 287 | 2004-03-08 01:41:16.410 | 53.2925  | 6.8950    | 3.0        | 0.44      | ZLV, FSW.WDB.VLW FNM                | 63       | 117       |
| 288 | 2004-03-16 23:49:41 240 | 53 0003  | 6 8800    | 3.0        | 0.96      |                                     | 163      | 178       |
| 200 | 2004-03-10 23.49.41.240 | 53.0505  | 0.0800    | 5.0        | 0.90      |                                     | 105      | 1/0       |
| 289 | 2004-03-21 17:05:44.580 | 53.2550  | 6.9183    | 3.0        | 1.44      | WDB,FSW,ZLV,ENV,HWF,ENM,VLW         | 111      | 147       |
| 290 | 2004-03-26 02:32:45.520 | 53.2727  | 6.8617    | 3.0        | 0.48      | FSW,ENM,ZLV,WDB                     | 81       | 50        |
| 291 | 2004-04-15 04:50:23.620 | 53.0412  | 6.8000    | 3.0        | 0.99      | WDB,ENV,ZLV                         | 144      | 113       |
| 292 | 2004-04-30 22:12:43.890 | 53.2298  | 6.7117    | 3.0        | 0.51      | WDB,ZLV,ENM,HWF,FSW,VLW             | 116      | 156       |
| 293 | 2004-05-24 05:03:13.440 | 53.3097  | 6.5250    | 3.0        | 1.36      | VLW,WDB,ZLV.HWF.FSW.ENV.ENM         | 84       | 109       |
| 294 | 2004-05-29 21:06:42 270 | 53 3080  | 6 5083    | 3.0        | 0.84      |                                     | 86       | 146       |
| 205 | 2004-05-21 00-50-10 060 | 52 21 20 | 6 5100    | 3.0        | 0.39      |                                     | 109      | 150       |
| 295 | 2004-03-31 00.39.19.900 | 53.3120  | 0.5165    | 5.0        | 0.26      |                                     | 100      | 152       |
| 296 | 2004-06-10 01:13:26.720 | 53.3905  | 6.6633    | 3.0        | 2.15      | ZLV,ENV,HWF,ENM,FSW,VBG,VLW,WDB     | 59       | 74        |
| 297 | 2004-06-21 23:32:02.760 | 52.9440  | 6.5683    | 3.0        | 2.78      | ENV,ENM,WDB,HWF,VBG,FSW,ZLV,VLW     | 102      | 217       |



| ID  | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                                    | Left [s] | Right [s] |
|-----|-------------------------|----------|-----------|------------|-----------|---------------------------------------------|----------|-----------|
| 298 | 2004-07-27 22:49:45.940 | 53.3433  | 6.8750    | 3.0        | 1.16      | ENM,FSW,HWF,WDB,ENV,VLW                     | 120      | 137       |
| 299 | 2004-08-21 01:06:32.820 | 53.1635  | 6.7933    | 3.0        | 1.80      | WDB,ENM,VBG,ZLV,FSW,VLW,ENV,HWF             | 29       | 103       |
| 300 | 2004-08-22 02:56:01.130 | 52,9460  | 6,5850    | 3.0        | 0.99      | ZLV.ENV.HWE.VLW                             | 69       | 63        |
| 201 | 2004 00 10 01:56:44 910 | 52 0629  | 6 6700    | 2.0        | 0.42      | WDR 71 /                                    | 07       | 24        |
| 501 | 2004-09-10 01.30.44.910 | 55.0656  | 6.6700    | 5.0        | 0.45      | WDB,ZLV                                     | 97       | 54        |
| 302 | 2004-09-18 03:33:12.380 | 53.4157  | 6.7033    | 3.0        | 1.18      | WDB,ZLV,ENM,FSW                             | 125      | 155       |
| 303 | 2004-09-22 12:44:33.000 | 53.3113  | 6.7433    | 3.0        | 1.54      | FSW,ENM,VLW,ZLV,WDB,HWF                     | 120      | 137       |
| 304 | 2004-10-08 13:23:42.720 | 53.0760  | 6.8333    | 2.5        | 1.27      | FSW,ZLV,ENV,HWF                             | 137      | 120       |
| 305 | 2004-10-30 11:40:52.880 | 53.3562  | 6.7783    | 3.0        | 1.36      | HWF,FSW,ENM,VBG,ENV,ZLV,WDB                 | 124      | 236       |
| 306 | 2004-10-31 17:27:21.880 | 52.9523  | 6.6333    | 3.0        | 0.86      | ENV,VBG,ZLV,WDB,HWF,FSW,ENM                 | 137      | 175       |
| 307 | 2004-11-13 12:15:57.320 | 53,2905  | 6.8017    | 3.0        | 1.17      | ENM.VLW.ZLV.HWE.WDB.ENV                     | 156      | 171       |
| 308 | 2004-11-23 22:13:10 360 | 53 1162  | 6 8200    | 3.0        | 0.31      | 71 V VI W ENV WDB                           | 120      | 1/13      |
| 200 | 2004 11 24 19:19:57 050 | 53.1102  | 6.7520    | 5.0        | 1.00      |                                             | 110      | 170       |
| 309 | 2004-11-24 18:18:57.950 | 53.2888  | 6.7533    | 3.0        | 1.86      | HWF,VBG,EINWI,FSW,WDB,EINV,ZLV,VLW          | 110      | 176       |
| 310 | 2004-11-25 14:25:54.430 | 53.1945  | 6.7717    | 3.0        | 0.65      | ZLV,VLW,HWF,FSW,VBG,ENM,ENV,WDB             | 118      | 185       |
| 311 | 2004-11-26 06:58:01.520 | 53.3142  | 6.7367    | 3.0        | 1.61      | ZLV,VBG,WDB,FSW,ENV,HWF,ENM,VLW             | 126      | 143       |
| 312 | 2004-12-16 21:14:30.200 | 53.2308  | 6.6517    | 3.0        | 0.78      | HWF,ENM,ZLV,ENV,FSW,VLW,WDB                 | 150      | 152       |
| 313 | 2005-01-09 23:59:38.530 | 53.3233  | 6.7967    | 3.0        | 1.69      | VLW,ENM,HWF,ENV,FSW,ZLV,WDB                 | 98       | 150       |
| 314 | 2005-01-17 00:00:55.580 | 53.3173  | 6.8083    | 3.0        | 1.10      | WDB,VLW,ZLV,FSW,ENM                         | 60       | 71        |
| 315 | 2005-01-30 02:31:34.040 | 53,2768  | 6.6917    | 3.0        | 1.03      | ENV.VLW.FSW.WDB.ZLV.ENM                     | 137      | 147       |
| 316 | 2005-02-08 13:20:33 860 | 53 3157  | 6 6383    | 3.0        | 2 25      | HWE ENV WDB 71 V ENM VI W ESW               | 130      | 140       |
| 217 | 2005-02-08 15:20:55:800 | 53.5157  | 0.0505    | 5.0        | 2.25      |                                             | 112      | 140       |
| 317 | 2005-02-15 19:21:11.010 | 52.9553  | 6.6050    | 3.0        | 0.95      | ZLV,WDB,VBG,ENV,VLW,HWF                     | 113      | 160       |
| 318 | 2005-02-16 10:46:17.860 | 53.4040  | 6.7933    | 3.0        | 1.26      | HWF,WDB,ENM,FSW                             | 123      | 134       |
| 319 | 2005-02-18 11:26:29.870 | 53.0810  | 6.6733    | 3.0        | 0.63      | ENV,WDB,ENM,VLW,HWF,FSW,ZLV                 | 129      | 128       |
| 320 | 2005-02-18 12:55:46.580 | 53.3405  | 6.7350    | 3.0        | 1.34      | ENV, VLW, ENM, HWF, FSW, WDB, ZLV           | 110      | 147       |
| 321 | 2005-02-18 18:49:25.650 | 53.2312  | 6.7500    | 3.0        | 0.54      | WDB,ZLV,FSW,ENM,ENV,VLW,HWF                 | 112      | 152       |
| 322 | 2005-02-18 22:05:52.170 | 53.2392  | 6.7267    | 3.0        | 1.63      | WDB,ZLV,FSW,ENV,VLW,HWF,ENM                 | 123      | 165       |
| 323 | 2005-02-20 06:03:24 650 | 53 1762  | 6 7950    | 3.0        | 0.02      | WDB HWE ENV ESW ZI V                        | 174      | 90        |
| 324 | 2005-02-25 03:46:00 860 | 53 2255  | 6 8117    | 3.0        | 1 5 8     | W/DR ENM 71 V UW/E                          | 122      | 125       |
| 324 | 2005-02-25 05:40:09:800 | 53.3355  | 0.0117    | 3.0        | 1.50      |                                             | 133      | 135       |
| 325 | 2005-03-01 16:31:59.410 | 53.3258  | 6.9217    | 3.0        | 1.23      | VLW,ZLV,FSW,WDB,ENM                         | 114      | 143       |
| 326 | 2005-03-08 23:00:58.530 | 53.2615  | 6.9150    | 3.0        | 0.86      | ZLV,ENM,VLW,WDB,FSW                         | 88       | 199       |
| 327 | 2005-03-10 02:04:39.780 | 53.3422  | 6.8100    | 3.0        | 1.95      | ENM,HWF,WDB,VLW,FSW,ENV,ZLV                 | 152      | 105       |
| 328 | 2005-03-21 10:58:33.930 | 53.2568  | 6.7667    | 3.0        | 0.93      | FSW,HWF,ENM,VLW,ENV,ZLV,WDB                 | 160      | 147       |
| 329 | 2005-03-21 23:21:19.980 | 53.4573  | 5.8500    | 3.0        | 1.76      | HWF,WMH,VBG,PPB,WDB,VLW,ENV,OTL,ZLV,FSW,ENM | 143      | 192       |
| 330 | 2005-04-02 23:21:08.740 | 53.2695  | 6,7983    | 3.0        | 1.21      | ENV.HWF.ZLV.WDB.FSW.ENM                     | 92       | 112       |
| 331 | 2005-04-18 19:11:16 590 | 53 2637  | 6 8033    | 3.0        | 1.03      | VI W WDB FSW HWE ZI V FNM                   | 118      | 142       |
| 222 | 2005 04 10 15:11:10:550 | 52 2005  | 6 9950    | 2.0        | 0.90      |                                             | 117      | 191       |
| 222 | 2005-04-21 20:49:21:040 | 53.2905  | 0.8850    | 3.0        | 0.90      |                                             | 120      | 101       |
| 333 | 2005-04-22 00:14:49.670 | 53.3345  | 0.8583    | 3.0        | 0.82      | HWF,WDB,FSW,EINW,VLW,ZLV                    | 126      | 134       |
| 334 | 2005-04-30 19:28:02.720 | 53.3595  | 6.7000    | 3.0        | 0.97      | HWF,WDB,ZLV,FSW,ENM                         | 59       | 105       |
| 335 | 2005-05-17 08:50:14.190 | 53.2318  | 6.8933    | 3.0        | 1.00      | WDB,VLW,ZLV,ENM,FSW                         | 131      | 152       |
| 336 | 2005-05-25 21:33:46.220 | 53.1937  | 6.8500    | 3.0        | 1.06      | FSW,VLW,ENV,HWF,ZLV,ENM                     | 119      | 138       |
| 337 | 2005-05-28 19:57:57.640 | 53.3740  | 6.0883    | 3.0        | 1.43      | FSW,WDB,HWF,ENM                             | 104      | 96        |
| 338 | 2005-05-30 15:36:45.870 | 53.3425  | 6.7100    | 3.0        | 2.29      | ENV,WDB,HWF,ENM,VBG,VLW,FSW,ZLV             | 178      | 140       |
| 339 | 2005-06-22 16:02:02 050 | 53 3295  | 6 8183    | 3.0        | 1 51      | ENM HWE ZI V ESW VI W WDB ENV               | 118      | 150       |
| 240 | 2005 07 00 17:01:27 400 | 52 2292  | 6.6950    | 2.0        | 1.51      |                                             | 117      | 140       |
| 240 | 2005-07-09 17:01:37:490 | 53.2363  | 0.0850    | 3.0        | 1.11      |                                             | 120      | 140       |
| 341 | 2005-07-17 18:07:07:830 | 53.3192  | 6.7467    | 3.0        | 1.82      | VLVV,FSVV,EINIVI,ZLV,HVVF,VVDB,EINV         | 139      | 150       |
| 342 | 2005-07-25 03:21:58.980 | 53.2118  | 6./11/    | 3.0        | 0.82      | ENM,WDB,ZLV,HWF,FSW                         | 107      | 71        |
| 343 | 2005-08-05 19:23:02.020 | 53.1703  | 6.8100    | 3.0        | 2.22      | ENV,VLW,WDB,ENM,HWF,ZLV,FSW                 | 90       | 133       |
| 344 | 2005-09-10 02:05:11.670 | 53.3162  | 6.7717    | 3.0        | 1.23      | ZLV,WDB,ENM,FSW,VLW,HWF                     | 92       | 40        |
| 345 | 2005-10-05 09:16:02.950 | 53.3307  | 6.6417    | 3.0        | 1.70      | HWF,ZLV,ENM,FSW,WDB                         | 127      | 154       |
| 346 | 2005-10-12 16:06:42.530 | 52.9628  | 6.4500    | 3.0        | 2.54      | VBG,ZLV,ENV,VLW,WDB,ENM,FSW,HWF             | 148      | 190       |
| 347 | 2005-10-23 17:03:38.080 | 53.3658  | 6.6750    | 3.0        | 1.88      | HWF.ZLV.ENM.WDB.FSW                         | 96       | 124       |
| 348 | 2005-11-11 17:02:29 540 | 53 2243  | 6 6967    | 3.0        | 1 36      | WDB VI W ENIM ENIV ESW HWE ZI V             | 127      | 143       |
| 240 | 2006 01 02 12:00:45 670 | 53.2245  | 6,6050    | 2.0        | 1.50      |                                             | 111      | 145       |
| 250 | 2000-01-02 12:00:45:070 | 53.2550  | 0.0550    | 5.0        | 1.07      |                                             | 121      | 107       |
| 350 | 2006-01-10 23:41:06.140 | 52.9560  | 6.5/1/    | 3.0        | 2.60      | ENV,VLW,FSW,VBG,WDB,ENM,HWF,ZLV             | 131      | 166       |
| 351 | 2006-01-14 22:29:54.760 | 53.1/67  | 6.7667    | 3.0        | 0.33      | WDB,HWF,ZLV,FSW                             | 123      | 158       |
| 352 | 2006-01-18 08:12:46.650 | 53.2903  | 6.7650    | 3.0        | 1.49      | ZLV,FSW,ENM,VLW,HWF,VBG,WDB,ENV             | 176      | 112       |
| 353 | 2006-01-18 22:08:15.790 | 53.2738  | 6.7733    | 3.0        | 1.60      | WDB,FSW,VBG,ENM,HWF,ZLV,VLW,ENV             | 222      | 192       |
| 354 | 2006-01-20 20:22:50.100 | 53.3362  | 6.7400    | 3.0        | 1.35      | FSW,ENM,WDB,HWF,ZLV                         | 92       | 99        |
| 355 | 2006-01-23 11:17:39.960 | 53.2367  | 6.6967    | 3.0        | 1.91      | ENM,WDB,HWF,ENV,VLW,ZLV,VBG,FSW             | 99       | 188       |
| 356 | 2006-01-28 03:00:42.030 | 53.3802  | 6.8183    | 3.0        | 1.13      | ENV,FSW,VBG,HWF,ENM,WDB,VLW.ZLV             | 95       | 38        |
| 357 | 2006-01-29 18:26:53 140 | 52 9518  | 6 5800    | 3.0        | 1 13      | ZI V HWE VI W ENV WDB FSW ENM               | 119      | 151       |
| 358 | 2006-02-11 20:01:35 920 | 53 2562  | 6 8/67    | 3.0        | 1.15      | WDB FSW FNIM 7I V HWE VI W FNIV             | 94       | 127       |
| 250 | 2006-02-11 20:01:35:520 | 53.2062  | 6 7050    | 3.0        | 1.20      |                                             | 124      | 127       |
| 200 | 2000-02-12 14.30.30.030 | 53.2900  | 6.7950    | 5.0        | 1.40      |                                             | 124      | 100       |
| 360 | 2006-02-24 04:50:30.030 | 53.3115  | 6.7883    | 3.0        | 1.33      | ZLV,FSW,ENM                                 | 99       | 103       |
| 361 | 2006-03-04 04:32:33.960 | 53.1435  | 6.7417    | 3.0        | 1.77      | ZLV,ENM,FSW,VLW,WDB,HWF,ENV                 | 147      | 137       |
| 362 | 2006-03-21 14:50:33.700 | 53.3020  | 6.7550    | 3.0        | 2.37      | ENM,ZLV,FSW,VLW,HWF,ENV,WDB                 | 122      | 183       |
| 363 | 2006-03-23 03:12:23.910 | 53.2835  | 6.7783    | 3.0        | 2.24      | HWF,FSW,VLW,ENV,VBG,WDB,ENM,ZLV             | 29       | 104       |
| 364 | 2006-03-25 13:54:38.140 | 52.8342  | 7.0450    | 2.0        | 2.10      | ENM,VBG,ZLV,FSW,HWF,VLW,ENV,WDB             | 97       | 210       |
| 365 | 2006-03-25 13:55:51.170 | 52.8338  | 7.0433    | 2.0        | 1.70      | ENM.VBG.ZLV.FSW.HWF.VLW.ENV.WDB             | 170      | 137       |
| 366 | 2006-04-05 01:41:09 760 | 53 2/28  | 6 8900    | 3.0        | 1 44      |                                             | 5.2      | 75        |
| 267 | 2006 04 12 05:20:20 140 | 52 2607  | 6,000     | 5.0        | 1.44      |                                             | 150      | 140       |
| 30/ | 2000-04-12 05:20:29.140 | 55.2097  | 0.8367    | 3.0        | 1.19      | HWF,VLW,ENM,ZLV,WDB,FSW                     | 153      | 143       |
| 368 | 2006-04-13 07:38:51.890 | 53.2402  | 6.6467    | 3.0        | 1.53      | VLW,WDB,FSW,HWF,ZLV,ENM                     | 107      | 150       |
| 369 | 2006-04-16 13:51:52.500 | 53.3105  | 6.7833    | 3.0        | 1.92      | FSW,ENM,ZLV,VLW,WDB,HWF                     | 120      | 161       |
| 370 | 2006-04-16 18:44:54.420 | 53.3128  | 6.7700    | 3.0        | 1.12      | ZLV,VLW,WDB,HWF,FSW,ENM                     | 112      | 159       |
| 371 | 2006-04-19 17:39:15.340 | 53.3363  | 6.6850    | 3.0        | 1.59      | HWF,WDB,FSW,ENM,ZLV,VLW                     | 90       | 129       |
| 372 | 2006-04-22 03:41:54.260 | 53.3248  | 6.7517    | 3.0        | 1.48      | ZLV,WDB,ENV,HWF,VLW,FSW                     | 39       | 134       |
| 373 | 2006-04-22 17:03:13.410 | 53.3823  | 6.5983    | 3.0        | 0.36      | HWF.WDB.FSW.ENM.ZLV                         | 104      | 99        |
| 374 | 2006-04-23 01:18:18.280 | 53.3383  | 6.8833    | 3.0        | 0.88      | ENM.ZLV.FSW.HWF.WDB                         | 95       | 162       |
| 375 | 2006-04-23 15:02:07 760 | 53 3887  | 6 5367    | 3.0        | 1 11      |                                             | 134      | 140       |
|     |                         |          |           | 5.5        |           |                                             |          |           |



| ID  | Origin time               | Latitude | Longitude   | Depth [km] | Magnitude | Stations                                       | Left [s] | Right [s] |
|-----|---------------------------|----------|-------------|------------|-----------|------------------------------------------------|----------|-----------|
| 376 | 2006-05-02 16:52:01.310   | 53.3137  | 6.7967      | 3.0        | 1.03      | ZLV,VLW,HWF,ENM,WDB,FSW                        | 130      | 140       |
| 377 | 2006-05-03 19:16:37.310   | 53.2898  | 6.7667      | 3.0        | 1.23      | ENM,WDB,FSW,ZLV,VLW,HWF                        | 116      | 141       |
| 378 | 2006-05-07 16:11:32 060   | 53 3452  | 6 7167      | 3.0        | 1 35      | VI W HWE ENM ESW WDB ZI V                      | 122      | 135       |
| 270 | 2000 05 07 10:11:52:000   | 53.3452  | 6.002       | 3.0        | 0.07      |                                                | 122      | 100       |
| 3/9 | 2006-05-22 20:23:40.850   | 53.2408  | 6.6983      | 3.0        | 0.87      | HWF,ENM,VBG,ENV,WDB,ZLV,VLW,FSW                | 158      | 137       |
| 380 | 2006-06-06 03:17:34.010   | 53.2377  | 6.8100      | 3.0        | 1.35      | ENV,FSW,WDB,VLW,ENM,ZLV                        | 95       | 82        |
| 381 | 2006-06-08 23:31:06.380   | 53.2398  | 6.6900      | 3.0        | 0.75      | HWF,ENM,FSW,ENV,ZLV,WDB,VLW                    | 87       | 116       |
| 382 | 2006-06-16 21:06:46.760   | 53.2925  | 6.7700      | 3.0        | 1.61      | ENM,ENV,FSW,ZLV,WDB                            | 129      | 147       |
| 383 | 2006-06-17 02:43:08.640   | 53.2970  | 6.7683      | 3.0        | 1.18      | FSW,ZLV,ENV,WDB,ENM                            | 65       | 67        |
| 384 | 2006-06-17 13:16:21.580   | 53,3295  | 6.8517      | 3.0        | 1.44      | ZLV.WDB.ENM.ENV.FSW                            | 122      | 135       |
| 205 | 2006 06 22 22:25:42 140   | 53.3255  | 6 7622      | 3.0        | 1.69      |                                                | 149      | 110       |
| 505 | 2006-06-23 22.33.43.140   | 55.5106  | 0.7055      | 5.0        | 1.00      | VLVV,EINIVI,HVVF,VVDB,FSVV,ZLV                 | 140      | 110       |
| 386 | 2006-06-24 16:42:19.500   | 53.3407  | 6.8233      | 3.0        | 1.25      | ENM,HWF,WDB,FSW,ZLV                            | 139      | 139       |
| 387 | 2006-07-12 00:13:56.330   | 53.3693  | 6.8133      | 3.0        | 0.86      | FSW,HWF,ENM,WDB,ZLV                            | 72       | 60        |
| 388 | 2006-07-12 22:56:23.840   | 53.3088  | 6.8683      | 3.0        | 1.30      | ZLV,WDB,ENM,FSW                                | 101      | 73        |
| 389 | 2006-07-16 08:10:39.150   | 53.3028  | 6.8667      | 3.0        | 1.48      | WDB,FSW,HWF,ENM,ZLV                            | 91       | 127       |
| 390 | 2006-08-08 05:04:00 050   | 53 3503  | 6 6967      | 3.0        | 3.47      | FSW VBG VI W ENV HWE ENM WDB ZI V              | 111      | 169       |
| 201 | 2000-08-08 05:04:00:050   | 53.3305  | 6.0007      | 5.0        | 3.47      |                                                | 05       | 101       |
| 391 | 2006-08-08 09:49:23.380   | 53.3495  | 6.7067      | 3.0        | 2.53      | EINIVI, VBG, VVDB, HVVF, EINV, FSVV, VLVV, ZLV | 95       | 104       |
| 392 | 2006-08-11 06:21:23.030   | 53.2190  | 6.6717      | 3.0        | 1.11      | ENM,WDB,ZLV,FSW                                | 124      | 133       |
| 393 | 2006-08-26 22:41:18.560   | 53.3432  | 6.7117      | 3.0        | 2.31      | HWF,FSW,VLW,WDB,ENM,ZLV,VBG,ENV                | 159      | 164       |
| 394 | 2006-09-06 01:37:32.170   | 53.1888  | 6.5217      | 3.0        | 1.77      | ZLV,VLW,ENV,HWF,ENM,WDB,FSW,VBG                | 96       | 35        |
| 395 | 2006-09-27 23:30:44.280   | 53.3675  | 6.6867      | 3.0        | 1.62      | WDB,FSW,ENV,HWF,ZLV,ENM,VLW                    | 85       | 128       |
| 396 | 2006-10-06 00.10.28 980   | 53 3022  | 6 7900      | 3.0        | 1 56      |                                                | 121      | 138       |
| 390 | 2000-10-00 00.10.28.980   | 53.3022  | 0.7900      | 3.0        | 1.50      |                                                | 121      | 138       |
| 397 | 2006-10-15 20:18:00.950   | 52.7675  | 6.8850      | 3.0        | 1.62      | ZLV,FSW,VBG,VLW,WDB,ENV,HWF                    | 125      | 138       |
| 398 | 2006-10-23 13:38:05.840   | 53.3723  | 6.7383      | 3.0        | 2.27      | ENM,VLW,ZLV,WDB,ENV,HWF,FSW                    | 178      | 146       |
| 399 | 2006-10-25 09:45:41.930   | 53.3255  | 6.9233      | 3.0        | 1.38      | ZLV,VLW,HWF,VBG,ENV,WDB,ENM,FSW                | 171      | 140       |
| 400 | 2006-10-26 02:57:47.240   | 52.6422  | 6.8033      | 3.0        | 0.76      | ENM,VBG,ENV,ZLV,HWF,VLW,WDB                    | 174      | 98        |
| 401 | 2006-10-26 13:59:37 830   | 53 3937  | 6 7050      | 3.0        | 1 37      | ENV WDB ZI V HWE ENM ESW VI W                  | 125      | 144       |
| 402 | 2006-11-04 21:04:49 490   | 52 02/2  | 6 5700      | 2.0        | 1.57      | WDR VI W ENIV 71 V ECN/ HWF                    | 117      | 120       |
| 402 | 2000-11-04 21:04:48:480   | 52.9342  | 0.3783      | 3.0        | 1.27      |                                                | 117      | 130       |
| 403 | 2006-11-05 15:00:25.430   | 53.2727  | 6.7917      | 3.0        | 1.18      | VLW,FSW,ENV,ZLV,HWF,WDB                        | 98       | 118       |
| 404 | 2006-12-25 04:57:18.510   | 53.3400  | 6.4033      | 3.0        | 1.26      | FSW,HWF,WDB,ENM                                | 100      | 157       |
| 405 | 2007-01-10 18:36:28.540   | 53.3405  | 6.8833      | 3.0        | 1.46      | ZLV,HWF,WDB,FSW,VLW                            | 125      | 132       |
| 406 | 2007-01-18 22:29:44.290   | 53.2737  | 6.7667      | 3.0        | 0.89      | FSW,WDB,ZLV                                    | 83       | 84        |
| 407 | 2007-01-26 00:20:09 100   | 53 3518  | 6 7550      | 3.0        | 2 33      | VI W ENV HWE ZI V ESW WDB VBG ENM              | 61       | 197       |
| 409 | 2007 01 20 00:20:05:100   | 53.3510  | 6.6717      | 3.0        | 1.10      |                                                | 100      | 157       |
| 408 | 2007-01-51 01.03.35.870   | 55.5060  | 0.0717      | 5.0        | 1.19      | EINIVI,F3VV,ZLV,HVVF,VVDB                      | 109      | 152       |
| 409 | 2007-02-04 04:47:35.160   | 53.3463  | 6.6583      | 3.0        | 0.64      | ENM,WDB,FSW                                    | 105      | 92        |
| 410 | 2007-02-16 11:14:09.060   | 53.2285  | 6.7017      | 3.0        | 1.46      | ZLV,VLW,ENV,ENM,VBG,HWF,WDB,FSW                | 109      | 172       |
| 411 | 2007-02-17 01:41:14.010   | 53.2273  | 6.7033      | 3.0        | 2.58      | ENV,VBG,ENM,WDB,FSW,HWF,ZLV,VLW                | 62       | 198       |
| 412 | 2007-02-17 02:21:08.020   | 53.2278  | 6.6833      | 3.0        | 0.92      | ENM.FSW.WDB.HWF.ZLV                            | 23       | 108       |
| 413 | 2007-02-17 19:58:01 450   | 53 3510  | 6 8567      | 3.0        | 0.89      | HWE WDB 7I V ESW                               | 113      | 164       |
| 414 | 2007 02 02 06:42:22 400   | 52,2252  | 6 7092      | 2.0        | 1.00      |                                                | 116      | 141       |
| 415 | 2007-03-03 00:43:33:450   | 53.2355  | 6.7005      | 5.0        | 1.05      |                                                | 110      | 120       |
| 415 | 2007-03-11 01:08:14.360   | 53.3257  | 6.7800      | 3.0        | 1.12      | WDB,EINW,ZLV,FSW                               | 2        | 130       |
| 416 | 2007-03-21 23:04:36.360   | 53.2400  | 6.7217      | 3.0        | 1.21      | ENM,ENV,FSW,HWF,WDB,VLW,ZLV                    | 116      | 141       |
| 417 | 2007-03-29 20:28:14.250   | 53.0678  | 6.6933      | 3.0        | 0.74      | ZLV                                            | 70       | 58        |
| 418 | 2007-03-30 16:25:05.670   | 53.2360  | 6.7067      | 3.0        | 1.24      | WDB,ENM,HWF,ENV,VLW,FSW                        | 110      | 105       |
| 419 | 2007-04-01 15:42:37.310   | 53.2295  | 6.6900      | 3.0        | 0.66      | ENM.WDB.ENV.VLW.FSW.HWF                        | 118      | 139       |
| 420 | 2007-04-13 14:57:28 170   | 53 2262  | 6 7433      | 3.0        | 1 21      | HWE FSW ENM WDB VI W                           | 142      | 147       |
| 420 | 2007 05 14 12:10:24 020   | 53.2202  | 6 7017      | 3.0        | 1.21      |                                                | 175      | 122       |
| 421 | 2007-03-14 12.19.24.020   | 55.5512  | 6.7017      | 5.0        | 1.99      | EINIVI,EINV,WDB,F3W,VLW,HWF                    | 125      | 152       |
| 422 | 2007-05-19 05:33:22.590   | 53.1630  | 6.8283      | 3.0        | 0.44      | FSW,WDB                                        | 127      | 130       |
| 423 | 2007-06-09 20:07:33.630   | 53.3530  | 6.7467      | 3.0        | 2.07      | ENV,VLW,ENM,HWF,WDB,FSW                        | 127      | 168       |
| 424 | 2007-06-10 17:27:40.310   | 53.3262  | 6.6133      | 3.0        | 1.70      | WDB,ZLV,VLW,ENM,HWF,FSW,ENV                    | 109      | 160       |
| 425 | 2007-06-11 02:18:12.250   | 53.3210  | 6.6533      | 3.0        | 1.05      | FSW,WDB,ZLV,ENM                                | 108      | 156       |
| 426 | 2007-06-23 02:01:45 220   | 53 3173  | 6 7033      | 3.0        | 1 23      | FSW HWE WDB ENM                                | 140      | 118       |
| 420 | 2007 07 02 20 20 27 02 20 | 53.5175  | 6.9750      | 3.0        | 1.42      |                                                | 120      | 224       |
| 427 | 2007-07-02 20.37.03.330   | 52.7675  | 0.8750      | 5.0        | 1.45      | ZLV, VLW, F3VV, HVVF, VBQ, EINV, VVDB          | 150      | 224       |
| 428 | 2007-08-15 05:49:24.240   | 53.3690  | 6.7317      | 3.0        | 1.46      | WDB,FSW,ENV,HWF,ZLV,VLW,ENM                    | 119      | 138       |
| 429 | 2007-09-17 05:01:20.880   | 53.3443  | 6.8000      | 3.0        | 1.55      | VLW,ENM,HWF,FSW,WDB,ZLV,ENV                    | 142      | 136       |
| 430 | 2007-09-18 06:16:33.810   | 53.2360  | 6.8000      | 3.0        | 0.88      | FSW,ZLV,ENM,WDB                                | 129      | 128       |
| 431 | 2007-09-28 05:26:40.030   | 53.3378  | 6.6233      | 3.0        | 1.22      | HWF,WDB,ENM                                    | 170      | 115       |
| 432 | 2007-09-30 14:17:35.630   | 53.1942  | 6.7883      | 3.0        | 2.07      | ENM, ENV, VLW, ZLV, WDB. FSW. HWF. VBG         | 168      | 200       |
| 433 | 2007-10-27 01:57:51 450   | 53 2228  | 6 7/83      | 3.0        | 1 00      |                                                | 36       | 96        |
| 133 | 2007 11 12 10:2005 020    | 52 2022  | 6 0 2 2 2 2 | 5.0        | 1.55      |                                                | 114      | 140       |
| 434 | 2007-11-13 10:26:05.830   | 33.2932  | 0.8233      | 3.0        | 1.67      | EINV,FSVV,WDB,ZLV,VLW,ENM                      | 114      | 143       |
| 435 | 2007-11-30 21:37:45.840   | 53.0530  | 6.5683      | 3.0        | 1.47      | HWF,ENM,WDB,VLW,FSW,ZLV,ENV                    | 122      | 182       |
| 436 | 2007-12-10 03:59:13.850   | 53.2972  | 6.5350      | 3.0        | 0.69      | ENM,WDB                                        | 23       | 110       |
| 437 | 2008-01-02 03:36:15.850   | 52.9388  | 6.5600      | 3.0        | 1.40      | HWF,VLW,ENV,FSW,WDB,ENM,ZLV                    | 53       | 80        |
| 438 | 2008-01-05 20:31:49.730   | 53.0647  | 6.7817      | 3.0        | 1.74      | WDB,ENM,HWF,FSW.VBG.ENV.ZLV.VLW                | 172      | 130       |
| 430 | 2008-01-07 21:53:16 800   | 53 2428  | 6 6583      | 3.0        | 1 15      |                                                | 107      | 112       |
| 435 | 2000-01-07-21.33.10.000   | 53.2420  | 0.0303      | 5.0        | 1.13      |                                                | 107      | 00        |
| 440 | 2008-01-24 19:21:01.700   | 53.1962  | 6.7733      | 3.0        | 1.52      | WDB,FSW,ZLV,HWF,VLW,ENM                        | 102      | 98        |
| 441 | 2008-02-12 02:48:49.960   | 53.3108  | 6.7833      | 3.0        | 0.91      | HWF,ZLV,FSW,WDB,ENM                            | 6        | 125       |
| 442 | 2008-02-17 16:35:15.190   | 53.0823  | 6.6817      | 3.0        | 1.80      | FSW,VLW,ENM,ZLV,WDB,VBG,HWF,ENV                | 116      | 141       |
| 443 | 2008-02-19 15:44:51.340   | 53.1830  | 6.7617      | 3.0        | 0.92      | VLW,ZLV,HWF,WDB,ENV,FSW,ENM                    | 131      | 134       |
| 444 | 2008-03-19 17:02:10.020   | 53.3480  | 6.5650      | 3.0        | 1.16      | HWF.ENV.ENM.WDB FSW                            | 131      | 126       |
| 445 | 2008-03-29 16:57:22 020   | 53 2922  | 6 8/17      | 3.0        | 1 //2     |                                                | 122      | 150       |
| 145 | 2009 02 21 07:00:02 500   | 52 2462  | 6 7000      | 3.0        | 1.72      |                                                | 107      | 100       |
| 446 | 2008-03-31 07:06:02.500   | 53.3463  | 6.7000      | 3.0        | 1.23      | ENM,FSW,HWF,WDB                                | 197      | 132       |
| 447 | 2008-04-02 01:15:31.700   | 52.9462  | 6.5917      | 3.0        | 1.93      | FSW,ZLV,HWF,VBG,ENM,ENV,VLW,WDB                | 56       | 77        |
| 448 | 2008-04-02 01:28:37.190   | 52.9467  | 6.5950      | 3.0        | 2.47      | FSW,ZLV,HWF,VBG,ENM,ENV,VLW,WDB                | 74       | 59        |
| 449 | 2008-04-07 04:32:22.730   | 53.2943  | 6.8967      | 3.0        | 1.22      | FSW,ENM,WDB                                    | 137      | 120       |
| 450 | 2008-04-11 22:51:26.220   | 53.2832  | 6.8750      | 3.0        | 1.12      | FSW.ENM.WDB.ZLV                                | 102      | 115       |
| 451 | 2008-04-15 04-54-03 210   | 53 3122  | 6 5567      | 3.0        | 0.90      |                                                | 120      | 178       |
| 451 | 2008 04 22 11.46.02 520   | 52.0675  | 6.7700      | 5.0        | 1.50      |                                                | 147      | 140       |
| 452 | 2008-04-22 11:46:02.530   | 53.06/5  | 6.7700      | 3.0        | 1.84      | HWF,ENW,FSW,VLW,WDB,ENV,ZLV                    | 117      | 140       |
| 453 | 2008-04-28 02:47:01.090   | 53.2585  | 6.8600      | 3.0        | 1.30      | FSW,VLW,WDB,ZLV,ENM,HWF                        | 42       | 91        |



| 444     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     40000     400000     400000     400000     400000     400000     400000     400000     400000     400000     400000     400000     4000000     400000000     40000000000     400000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ID  | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                          | Left [s] | Right [s] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|----------|-----------|------------|-----------|-----------------------------------|----------|-----------|
| 4435008 80 00 21 SENSION61.20961.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.20191.201 </td <td>454</td> <td>2008-05-05 19:56:08.310</td> <td>53.3325</td> <td>6.5900</td> <td>3.0</td> <td>1.01</td> <td>WDB,ENM,ZLV,HWF,FSW</td> <td>78</td> <td>91</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 454 | 2008-05-05 19:56:08.310 | 53.3325  | 6.5900    | 3.0        | 1.01      | WDB,ENM,ZLV,HWF,FSW               | 78       | 91        |
| 96         0386-61         032205         0339         042         PPUVMCPLYLANALSYN-WYLN         64         44           038         0386-61         03327         67700         020         0319         04000         05000         05100           038         03364-51         03327         67700         030         016         04000         05000         05100         05100           041         03000-51         0339         0.422         030         0.010         05000         05000         05100         05100         05100           041         03000-51         03399         0.4230         0.30         0.43         0.401         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000         07000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 455 | 2008-05-09 21:33:03.070 | 53.2857  | 6.7250    | 3.0        | 1.32      | VLW,WDB,ZLV,FSW,ENV,HWF           | 123      | 142       |
| 107         108         112         113         113         113           107         108         113         113         113         113         113           108         113         113         113         113         113         113           108         113         113         113         113         113         113           114         113         114         114         114         114         114           114         114         114         114         114         114         114           114         114         114         114         114         114         114           114         114         114         114         114         114         114           114         114         114         114         114         114         114         114           114         114         114         114         114         114         114         114           114         114         114         114         114         114         114         114           114         114         114         114         114 <th114< th="">         114         <th114< th=""></th114<></th114<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 456 | 2008-05-10 23:20:35 310 | 53 3265  | 6 7283    | 3.0        | 1 22      |                                   | 166      | 146       |
| Biol         State Set Head Set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 450 | 2008-05-10 23:20:35:510 | 53.3203  | 6.7203    | 5.0        | 2.17      |                                   | 00       | 140       |
| 48         2008.15         11.200         33.30         1.95         MUD2_US_US_US_MADAULAUNAU         100           48         2008.15         11.300         1.339         1.339         1.339         1.339           40         2008.15         12.339         1.339         1.339         1.339         1.339           41         2008.15         12.335         2.330         1.339         1.339         1.339         1.339           42         2008.15         13.337         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         6.3377         7.330         6.357         7.330         7.33         7.337         7.337         7.330         7.33         7.337         7.337         7.330         7.337         7.330         7.337         7.330         7.337         7.330         7.337         7.330         7.337         7.330         7.337         7.330         7.337         7.330         7.330         7.330         7.330         7.330         7.330         7.330         7.330         7.330         7.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 457 | 2008-05-18 13:23:46.140 | 53.3753  | 6.7283    | 2.8        | 2.17      | HWF,ENM,ENV,VLW,WDB,ZLV,FSW       | 98       | 119       |
| de/         Disk-Soli A-REG-Sol         1-5408         C-200         C-200 <thc-200< th=""> <thc-200< th="">         C-200</thc-200<></thc-200<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 458 | 2008-05-19 15:07:29.550 | 53.3247  | 6.7400    | 3.0        | 1.85      | WDB,ZLV,FSW,HWF,ENM,VLW,ENV       | 106      | 106       |
| 400         2018 6-01 100387 70         5.5778         6.767         30         1.52         PEAL MERK MURLAN LANCE         171         172         173           444         2016 6-10 52.27.20         23.357         4.570         3.5         2.13         WHI 101         3.5         3.5           444         2016 6-21 52.27.20         23.357         4.570         3.5         3.6         4.571         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.576         3.5         4.577         3.5         4.573         4.577         3.5         4.573         4.577         3.5         4.573         4.577         3.5         4.573         4.573         4.577         3.5         4.573         4.573         4.573         4.573         4.573         4.573         4.573         4.573         4.573         4.573         4.573         4.573         4.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 459 | 2008-05-30 14:48:08.510 | 53.4080  | 6.6333    | 3.0        | 1.33      | ZLV,FSW,WDB,ENM,HWF               | 52       | 88        |
| 461         20084670.2251051.53         53.368         6.350         6.050         FMM_PNUZ_VMOR         75         882           463         2008452.21061.533         23.437         6.447         2.03         6.13         7.777878778787787777787787         7.877877777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 460 | 2008-06-01 11:00:58.770 | 53.3078  | 6.7817    | 3.0        | 1.32      | ENM,WDB,VLW,ENV,FSW,ZLV,HWF       | 117      | 172       |
| 462         SOURA-15 00:227.00         Source Part Part Part Part Part Part Part Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 461 | 2008-06-10 20:51:05.760 | 53.3098  | 6.7850    | 3.0        | 0.86      | ENM,FSW,ZLV,WDB                   | 74       | 116       |
| 943         0306-02 2110011539         03277         6.477         0.580         0.791         0.7000         0.792           044         2006-07 211051759         0.5178         6.487         0.580         0.417         0.580         0.417         0.580         0.417         0.580         0.417         0.580         0.417         0.580         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.590         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 462 | 2008-06-15 06:29:27.020 | 52.8637  | 4.3617    | 3.5        | 2.13      | WMH.OTL                           | 75       | 182       |
| rold         S2000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 463 | 2008-06-22 21:06:15 530 | 53 2477  | 6 8417    | 3.0        | 0.91      | WDB ENIM ESW                      | 98       | 122       |
| main         main <thmain< th="">         main         main         <th< td=""><td>405</td><td>2008 06 22 21:00:13:530</td><td>53.2477</td><td>6.9550</td><td>3.0</td><td>1 1 1</td><td>ZIVWDB</td><td>60</td><td>80</td></th<></thmain<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 405 | 2008 06 22 21:00:13:530 | 53.2477  | 6.9550    | 3.0        | 1 1 1     | ZIVWDB                            | 60       | 80        |
| 48         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40         2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 404 | 2008-06-23 13.32.14.330 | 55.1066  | 0.8550    | 5.0        | 1.11      |                                   | 00       | 00        |
| def         2004/23 20031.90         33.118         6.603         1.24         HWTERVANDERWALVERW         124         120           def         2004-25 20031.90         23.218         6.603         0.00         123         120           def         2004-25 2255.10         23.249         6.650         130         120         131           def         2004-25 2255.10         23.750         6.607         130         120         133         EMATYSAN (WARDER)         13         130           def         2004-25 2255.10         23.750         6.607         130         133         EMATYSAN (WARDER)         13         130           def         2004-52 0120.4416         33.370         6.6017         130         133         EMATYSAN (WARDER)         131           def         2004-126 02.485.000         5.3212         6.800         130         132         EMATYSAN (WARDER)         131           def         2004-126 02.485.000         5.3322         6.800         130         132         EMATYSAN (WARDER)         131           def         2004-136 01.202         6.3338         6.01         132         144         133           def         2004-146 01.222.3880         6.320         130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 465 | 2008-07-10 06:57:33.900 | 53.3505  | 6.8817    | 3.0        | 2.46      | ZLV,WDB,VLW,ENV,FSW,ENM,HWF       | 163      | 209       |
| 447         2008.80 (D.245.5) (L.8 (D.37))         6.098         1.0         1.99         7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 466 | 2008-07-23 20:05:12.970 | 53.2118  | 6.6633    | 3.0        | 1.24      | HWF,ENV,WDB,FSW,ZLV,ENM,VLW       | 124      | 141       |
| defi         deficie         product of the state of th | 467 | 2008-08-05 02:35:51.140 | 52.7615  | 6.9083    | 3.0        | 1.99      | ZLV,WDB,VBG,ENM,FSW,HWF,ENV       | 12       | 120       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 468 | 2008-08-23 19:49:07.370 | 53.3298  | 6.7250    | 3.0        | 0.94      | ENM,ZLV,HWF,FSW,WDB               | 119      | 156       |
| 940         0006-041-00221-020         0.020         0.112         PSPUZ.VIV.VIV.VIV.VIV.VIV.00         17         93           941         2006-65-008-855.66         003.30         6.0707         3.0         1.31         PSPUZ.VIV.VIV.VIV.VIV.VIV.00         17         93           942         2006-65-008-855.66         03.230         6.0707         3.0         1.03         PSVUZ.VIV.VIV.VIV.VIV.VIV.VIV.00         17         17           947         2008-10-207-885.06         03.232         6.890         1.03         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17 <t< td=""><td>469</td><td>2008-08-26 22:55:52.650</td><td>52.9490</td><td>6.5650</td><td>3.0</td><td>2.32</td><td>HWF,FSW,WDB,VLW,ENM,ZLV,VBG,ENV</td><td>123</td><td>184</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 469 | 2008-08-26 22:55:52.650 | 52.9490  | 6.5650    | 3.0        | 2.32      | HWF,FSW,WDB,VLW,ENM,ZLV,VBG,ENV   | 123      | 184       |
| 171         2002-0915-22:857.20         32.033         6.033         1.03         ENVLY,VUMYER         171         185           172         2002-0916-22:857.00         32.330         6.0617         3.0         1.13         ENVLY,VUMYER/UL         16.3         12.33           173         2006-1016-10:879.900         32.320         6.0617         3.03         12.33         ENVLY,VUMYER/UL,VUME         13.3         ENVLY,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,VUMYER/UL,V                                                                                                                                                                                                                                                  | 470 | 2008-09-14 20:32:12 480 | 53 3307  | 6 6217    | 3.0        | 1 12      | FSW ZI V HWE WDB ENM              | 124      | 133       |
| TOP         2005 HE-20 EMESSAND         53.280         6.7707         5.30         1.33         CDMATEWINGLY         1.38         VIDEMATE         1.33         VIDEMATE         VIDEMATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 171 | 2008-09-15 22:26:57 620 | 53 0535  | 6 8033    | 3.0        | 0.99      | ENV ZLV VI W HWE WDB              | 71       | 98        |
| 11/2         000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 470 | 2000-09-19 22:20:57:020 | 53.0333  | 0.0055    | 5.0        | 1.22      |                                   | 120      | 145       |
| 4/3         0.089-02-91 (0.094.00)         0.31/9         0.807         0.20         1.81         VUERTWINK         0.21         0.21           4/3         2008-10-20 (0.094.00)         0.33.42         6.400         0.30         1.07         21/14/ME_FMALENUM         0.31         110           1/10         2008-10-20 (0.945.00)         53.3247         6.400         0.30         1.32         VUERTWINK         0.31         110           1/10         2008-10-20 (0.945.00)         53.3267         6.7200         0.30         2.22         PMM SUERWINK         120         140           1/10         1/10         53.3387         6.7303         0.30         0.66         PMW UNERWINK         120         113         130           1/20         2008-110 (0.952.300)         53.085         6.7703         0.30         1.51         VUERWINK         132         133           1/20         2008-120 (0.952.300)         53.025         6.0717         3.00         1.52         VUERWINK         121         133           1/20         2008-040 (0.953.600)         53.058         6.777         3.0         1.72         VUERWINK         121         133           1/20         2009-040 (0.953.600)         53.358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 472 | 2008-09-20 08:45:58.680 | 53.2380  | 6.7067    | 3.0        | 1.33      | EINIW,FSW,WDB,ZLV                 | 128      | 145       |
| 474         2028-10-10 88193-080         52.689         4.377         5.00         5.26         YULLYME-FUNKLINY, YSW, WB         677         99           475         2008-10-20 074850.241         5.2342         6.6553         3.00         1.73         YULLYME-FUNKLINY, YSW, WB         112         151           476         2008-10-20 074850.241         5.3347         6.700         3.00         1.33         FFMW WBLRMA, ZULHWE, YWLW, WB, RMA, ZULHWE, YWLW,                                                                                                                                                                                                                                         | 473 | 2008-09-29 10:20:44.810 | 53.3790  | 6.6017    | 3.0        | 1.83      | WDB,HWF,FSW,ZLV,ENM               | 63       | 123       |
| 475         2008-10-26 C24/85.008         53.242         6.8080         5.00         1.07         LLLLMMERLENLANDERS         7.72         IND           477         2008-10-26 163.02 14.08         53.337         6.7100         3.00         1.38         FEMALENLENLENLENLENLENLENLENLENLENLENLENLENL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 474 | 2008-10-11 08:19:39.900 | 52.6995  | 4.3717    | 3.0        | 2.65      | WMH,OTL                           | 67       | 99        |
| def         COUB-10.26 07:4652.40         S20445         6.5533         S.0         1.73         MDBALW,MWE/ENUX ZWE,MWE         112         115           df         Z0081-03 06 5542.80         S33387         6.700         S.0         J.22         ENM XWE,MWE/KWE,WWE,KWE         120         1140           df         Z0081-10 105012.02         S3386         6.7303         S.0         G.2         ENM XWE,MWE XU,WWE,WWE,WWE         120         1140           df         Z0081-10 10505.080         S3085         6.7303         G.0         G.0         WWWE,WWE,XU,WWE         104         132           df         Z0081-10 03223.800         G30255         6.6283         G.0         G.0         HWE,ZU,SW,WWE,RW         112         133           df         Z0081-12 03223.800         G30255         6.7107         G.0         1.23         SWEMAN,WWE,WWE,WWE,WWE         121         135           df         Z0081-10 4083.400         G33305         6.7177         G.0         1.72         WWE,WWE,RWE,WWE,WWE,WWE,WWE,WWE,WWE,WWE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 475 | 2008-10-26 02:48:50.060 | 53.2432  | 6.8050    | 3.0        | 1.07      | ZLV, HWF, ENM, ENV, VLW, FSW, WDB | 79       | 110       |
| 9772008-1029 1052/21053.32976.7003.001.32PENAMONE/NUMEUN/UNCLUNCENULY1.301.409782008-11-07 16400 12753.3686.7383.000.66PUNAMONE/NUMEUN/UNCLUNCENULY1.411.519842008-11-05556.9053.0826.7313.000.66PUNAMONE/NULY1.121.219842008-11-05556.9053.0826.7313.000.66PUNAMONE/NULY1.321.329842008-12-155.04-17.0853.3606.7313.001.43ZUVADERNULYNMAMFE/SW1.181.319842008-12-155.04-17.0853.3606.7313.001.51PUNAMONE/NULYNMAMFE/SW1.711.319852008-10-109-55.46053.3656.7173.001.51PUNAUMONE/NULYNMAMFE/SW1.701.719862009-10-109-55.46053.3756.7173.001.72PUNAUMENAULYNMAMFE/SW1.701.719872009-01-10-155.46153.3756.7173.001.15PUNAUVENAUMENAULYNMAMFE/SW1.701.719882009-01-01-155.46153.3766.7173.001.15PUNAUVENAUVENAUMENAUVENAUVENAU1.711.719892009-02-01-55.4053.3766.7173.001.16PUNAUVENAUVENAUVENAUVENAUVENAUVENAUVENAUV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 476 | 2008-10-26 07:49:52.410 | 52.9445  | 6.5533    | 3.0        | 1.73      | WDB,VLW,HWF,ENV,ZLV,FSW,ENM       | 112      | 151       |
| 178         2020         1.3380         6.720         1.30         1.22         PENMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPACEURUMESPAC                                     | 477 | 2008-10-29 16:36:21.820 | 53.3297  | 6.7100    | 3.0        | 1.38      | FSW,WDB,ENM,ZLV,HWF               | 79       | 115       |
| 979         2009-11-07         1.6.3.8.8.8         6.7.3.9.         2.0.8         1.7.1.4         1.7.1.4           841         2009-11.16 (255.16.9.0)         5.3.8.42         6.7.9.7         3.0         1.7.1         1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 478 | 2008-10-30 05:54:29 080 | 53 3367  | 6 7200    | 3.0        | 3.22      | ENM FSW ZI V HWE VI W WDB VBG ENV | 120      | 140       |
| 19         2000 II UN INCLUD.20         33.385         0.733         3.0         2.00         IMMUNDERMUNUSCUM         14         173           40         2008 II ID 253.590         53.305         6.423         3.0         1.01         IMMUNDERMUNUSCUM         131           402         2008 II ID 253.590         53.305         6.423         3.0         1.13         IMMUNDERMUNUSCUM         132           403         2008 II ID 253.500         53.305         6.423         3.0         1.54         IMMUNDERMULTING         134         135           404         2008 II ID 23.466         6.3105         6.710         3.0         1.51         IMMUNDERMULTING         14         172           408         2009 II ID 108.34500         53.305         6.717         3.0         1.71         IMMUNDERMULTING         172         173           408         2009 II ID 108.34500         53.337         6.717         3.0         1.55         IMMUNDERMULTING         174         174           408         2009 II ID 107.05 53.466         53.337         6.717         3.0         1.13         IMMUNDERMULTING         171           408         2009 II ID 22.246         53.337         6.7417         3.0         1.13         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 470 | 2008 11 07 16:40:01 270 | 53.3507  | 6.7250    | 3.0        | 2.16      |                                   | 124      | 174       |
| 480         AUDR-11-01 (L35)(4800)         5.104.2         6.74.3         4.00         VUMPURE         VUMPURE         103         112           481         2008-12-10 (322-2500)         53.2796         6.8283         3.0         1.00         HHF (VADE)         113         136           482         2008-12-20 (322-2500)         53.2796         6.8283         3.0         1.64         ZUWMEVEMEM         122         136           484         2008-12-23 (3) (55.8840)         53.0492         6.7100         3.0         1.43         ZUWMEVEMEM         122         136           486         2009-10 (10.83-6460)         53.0493         6.7173         3.0         1.51         VUWMOR (MUVEMEM         122         112           488         2009-10 (10.83-6460)         53.3477         6.717         3.0         1.68         WDRENVUME         119         167           491         2009-10 (10.83-640)         53.3477         6.713         3.0         1.88         WDRENVUME         119         167           492         2009-10 (10.23.4400)         53.3477         6.8750         3.0         1.17         EWEALVHFW, WORLWEW         114         139           494         2009-01 (12.23.41300)         53.3477         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/9 | 2008-11-07 16.40.01.270 | 55.5606  | 6.7550    | 5.0        | 2.10      |                                   | 124      | 174       |
| 481         2008         11.6         2.12         HMWF,RUNDE,RUV,UZ,W         91         122           482         2008-12-15         20.33795         6.830         1.09         HMTE,ZUPSKW,MDE,RM         123         136           483         2008-12-15         20.33180         6.600         3.0         1.14         WURD,RUV,MM, WF,SW         118         139           484         2008-12-21         20.512-21         SUVMOB,RMLZU,ENV         4         128           485         2009-101         093-3508         6.517         3.0         1.12         ENXLUXENV         4         128           486         2009-101         093-3568         3.5368         6.717         3.0         1.16         ENXLUXENV,MENU         170         142           489         2009-01-0154-344         3.5378         6.707         3.0         1.03         ENXLUXENV,MENU         197         100           492         2009-01-056334         3.5378         6.700         3.0         1.15         ENXLUXENV,MENU         118         139           494         2009-020         1524.40         3.3386         6.777         3.0         1.16         ENXLUXENV,MENU         134         144           490 </td <td>480</td> <td>2008-11-10 10:55:06.900</td> <td>53.0825</td> <td>6.7633</td> <td>3.0</td> <td>0.66</td> <td>VLW,HWF,ENV,ZLV,WDB</td> <td>104</td> <td>153</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480 | 2008-11-10 10:55:06.900 | 53.0825  | 6.7633    | 3.0        | 0.66      | VLW,HWF,ENV,ZLV,WDB               | 104      | 153       |
| 442         2008 1-21 0322:38000         5.32795         6.5283         3.0         1.09         HHF_EVEN         118         139           454         2008 1-22 151:65840         53.4025         6.7100         3.0         1.14         ZUWMEVENMURMURMURFEN         118         139           454         2008 1-22 151:65840         53.4025         6.7103         3.00         1.51         VUWNDERVENMURMURMURFEN         121         136           458         2009 -101 1053:4660         53.3295         6.7133         3.00         1.52         FW/LVX.FW/HWF MORENMURFEN         170         142           459         2009 -101 1053:4660         53.3477         6.7177         3.00         1.18         WDELW/LVX.WWDE.WMF FW.ZIV         170         161           459         2009 -104 23:14:68         53.347         6.7733         3.00         1.38         WDELW/LVX.WWDE.WMF FW.ZIV         118         139           459         2009 -014 23:24:68         53.3376         6.7373         3.00         1.23         FW/LVX.WWDE.WVX.WWDE         47         136           459         2009 -024 15:24:13:30         53.3375         6.2733         3.00         1.66         ZUV/NMD.WVX.WWDE         47         136           459         2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 481 | 2008-11-16 22:51:09.670 | 53.0482  | 6.7917    | 3.0        | 1.21      | HWF,WDB,ENV,VLW,ZLV               | 91       | 122       |
| 483         2008-12-53 20-6117000         5.3380         6.6000         3.00         1.54         UNDBLEWEML-WIFEW         118         138           448         2008-12-24 052-110534         53.0456         6.5317         3.00         1.23         FEYNLEW-NORDENNZUVEW         44         128           448         2009-01-010343-000         53.3365         6.5717         3.00         1.52         VENNZUVENVEW         170         142           449         2009-01-01034-54.640         53.3375         6.5707         3.00         1.58         UNDBLIVERMLSWEW         170         142           449         2009-01-091-0554.440         53.3477         6.717         3.00         1.58         UNDRLWERMLSWEW         176         176           479         2009-01-076053.440         53.3375         6.700         3.00         1.51         ENNUXUXUVENMLWENUWE         167         178           479         2009-02-01 6623.440         53.3375         6.700         3.00         1.16         CUXUVENNUMENUMENUWE         178         139           479         2009-02-01 6623.440         53.3375         6.700         3.00         1.17         CUXUVENNUMENUMENU         184         139           479         2009-02-01 6623.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 482 | 2008-12-10 03:22:38.900 | 53.2795  | 6.8283    | 3.0        | 1.09      | HWF,ZLV,FSW,WDB,ENM               | 132      | 136       |
| 948         2008-12.21 15/16.58.400         53.402         67.100         3.00         1.1.3         ZUVMDELVEMMLMMER/EW         1.21         1.21           466         2009-1.01 08/3.4000         53.068         6.7183         3.00         1.23         FWM-MK-NDE.NMLVLYEW, MM-M         1.22         1.23           478         2009-01.01 08/3.4600         53.303         6.717         3.00         1.23         FWM-MK-NDE.NMLYLYEW, MM-M         1.72         1.73           488         2009-01.01 16/3.4601         53.347         6.717         3.00         1.66         ENMLYLY.WDE.MWERWZW         1.70         1.14           490         2009-01.09 201658.400         53.347         6.773         3.00         1.16         ENMLYLY.MVDE.MWERWZW         1.70         1.73           491         2009-021 (42.22.416)         53.319         6.750         3.0         1.15         ENMLYLY.MVDE.MWERWZW         1.18         1.73           493         2009-024 (42.23.4105         53.317         6.7600         3.0         1.14         2.14/1.0004.100.100.100.100.100.100.100.100.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 483 | 2008-12-15 20:41:17.080 | 53.3360  | 6.6000    | 3.0        | 1.54      | WDB,ZLV,ENM,HWF,FSW               | 118      | 139       |
| effs         20091/22/4 032710931         53.048         65.817         3.0         1.23         FPX.MVWDEEM.ZUKEW.WEIM.RUX.VER.W.         4         1.28           48         20090-010 08345.080         53.328         6.6171         3.0         1.21         ENX.VLYU.VER.W.WWDEEM.ZUKEW.WIDE.W.         112         913           48         20090-101 08345.080         53.347         6.7167         3.0         1.13         ENX.VLYU.VER.W.WWDE.M.         112         913           48         20090-103 01:152.41:3.30         53.347         6.713         3.0         1.38         ENX.VLYU.W.M.M.W.F.SW.ZUK         110         1111           49         2009-01 04323.4(10         53.338         6.713         3.0         1.33         ENX.VLY.W.M.W.F.W.W.ENX.VVWE.W.W         10         1313           49         2009-02.01 04232.4(10         53.338         6.730         3.00         1.13         ENX.VLY.W.W.WE.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W.W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 484 | 2008-12-23 15:16:58.840 | 53,4025  | 6.7100    | 3.0        | 1.43      | ZLV.WDB.ENV.ENM.HWF.FSW           | 121      | 136       |
| 488         2009-01-01 083439308         53.095         6.7119         3.0         1.51         VUMUNDERMUZUENVERSUMME         1.2           487         2009-01-01 083443908         53.095         6.7119         3.0         1.22         ENCLUSSUMME         1.12         93           488         2009-01-01 684448         53.3463         6.7177         3.0         1.73         WDEHMFENKERSULENV         67         1114           489         2009-01-05 63.447         6.7173         3.0         1.66         ENMLWUNDERMURENSULENV         67         1114           491         2009-01-05 23.4173         6.7173         3.0         1.03         ENMLXUNDERMURENSULENV         65         173           492         2009-02-01 64.32.4160         53.388         6.7470         3.0         1.16         CULVMERSWEMUMF         95         51.34           492         2009-02-01 63.22.470         63.00         3.0         1.42         CULVMENDERSWEMUMF         95         51.34           493         2009-02-01 51.561.290         53.375         6.6000         3.0         1.42         CULVMENDERSWEMUMF         95         59.32           493         2009-02-21 1562.5550         53.375         6.6007         3.0         0.16 <t< td=""><td>485</td><td>2008-12-24 03:27:10 953</td><td>53 0648</td><td>6 5817</td><td>3.0</td><td>1 23</td><td>ESW HWE WDB ENM ZI V ENV</td><td>4</td><td>128</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 485 | 2008-12-24 03:27:10 953 | 53 0648  | 6 5817    | 3.0        | 1 23      | ESW HWE WDB ENM ZI V ENV          | 4        | 128       |
| Base         Decomposition         Decomposition <td>196</td> <td>2000 12 24 03:27:10:555</td> <td>52.0050</td> <td>6 7192</td> <td>2.0</td> <td>1.53</td> <td></td> <td>02</td> <td>112</td>                                                                                                                                                                                                                                                                                                                                                                                                                                               | 196 | 2000 12 24 03:27:10:555 | 52.0050  | 6 7192    | 2.0        | 1.53      |                                   | 02       | 112       |
| ###         2009-01-01 0053-06300         53.630         6.5017         3.30         1.22         CBCNUMPSENDER         1.12         93           488         2009-01-01 654-86010         53.3472         6.7167         3.0         1.66         ENM.WLX.WDB.HWF.FSW.LVEWN         161           490         2009-01 0021-658.440         53.3482         6.8717         3.0         1.03         ENM.ZLV.WDB.HWF.FSW.LVE         163           491         2009-01 0423.24100         53.383         6.8717         3.0         1.03         ENM.ZLV.HWW.WDB.HWF.SW.LVE         165           492         2009-02 01 0423.24100         53.347         6.7400         3.0         1.17         FSW.LV.HWW.MDB.FSW.LWE         95         51.34           493         2009-02 01 0423.250.000         53.370         6.67417         3.0         1.66         CJV.WDB.FSW.LMM.WDB.FSW.LWE         173           494         2009-02 01 551.250.200         53.3178         6.6407         3.0         0.76         ZJV.WDB.FSW.LWM.WDB         142         1134           493         2009-02 20 1521.290.51.513         53.118         6.6407         3.0         0.71         HWF.SW.LWE.MW.MDB         143         1141           501         2009-02 20 1521.490.51.5113         53.1180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400 | 2009-01-01 08.34.39.080 | 53.0950  | 0.7165    | 5.0        | 1.51      |                                   | 92       | 112       |
| 488         2009-01-01 165446-910         53.867         6.7167         3.0         1.7.3         VDB4,WVE,MV,MV,MV,MV,MV,MV,MV,MV,WV,WV,WV,WV,WV,WV,WV,WV,WV,WV,WV,WV,WV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 487 | 2009-01-01 09:35:46.690 | 53.3295  | 6.9017    | 3.0        | 1.22      | ENV,ZLV,FSW,HWF,WDB,ENM           | 112      | 93        |
| 489         2009-01-88 0117:01/760         53.3472         6.7173         3.00         1.66         EMMURLYUNUUUVUUVUUVUUVUUUVUUUVUUUUUUUUUUUUUUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 488 | 2009-01-01 16:54:46.910 | 53.3663  | 6.7717    | 3.0        | 1.73      | WDB,HWF,ENM,FSW,ZLV,ENV           | 170      | 142       |
| 949         2009-01-92 20:1658.440         53.348         66.717         3.00         1.88         UDE,NULW,UME,NU,WU,WU,MU,WU,WU,WU,WU,WU,WU,WU,WU,WU,WU,WU,WU,WU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 489 | 2009-01-08 01:17:01.760 | 53.3477  | 6.7167    | 3.0        | 1.66      | ENM,VLW,ZLV,WDB,HWF,FSW,ENV       | 67       | 114       |
| 949         2009-01-1512-4113-360         53.738         6.6770         3.0         1.03         FEWLZ.WIPWEDRENYSOV.WIP         118           943         2009-02401-022-324.60         53.338         6.7400         3.00         1.17         FENUZ.WIPWEDRENYSOV.WIP         105         117           944         2009-02401-022-35.007         53.376         6.731         3.00         1.17         FENUZ.WIPWEDRENYSOV.WIP         154         117           949         2009-02401-122-35.007         53.376         6.733         3.00         1.06         ZUVENMUDBSYN.WIPW         134         137           949         2009-02401-122-35.007         53.376         6.6303         3.00         1.06         ZUVENMUDBSYN.WIPW         134         137           949         2009-022-115-35.05         53.318         6.6407         3.00         0.53         FHWFFYNUZ.VENWUNDB,FWEZU         114         900           900         2009-22-115-33.348         53.118         6.6407         3.00         0.78         FHWFFYNUZ.VENWUNDB,FWEZU         114         914           901         2009-23-13-13.33.280         53.118         6.647         3.0         0.78         CUVENWUZ,VENWUND,FWEZU         114         914           910         2009-31-11.33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 490 | 2009-01-09 20:16:58.440 | 53.3412  | 6.7133    | 3.0        | 1.88      | WDB,ENV,VLW,ENM,HWF,FSW,ZLV       | 119      | 167       |
| 949.         2009-01-17 06:053.640         53.789         6.730         3.0         1.15         ENKLYLYHKYUDE.NUSYUWW         118         1193           943         2009-0240 042324.160         53.3547         6.7400         3.0         1.17         FSW_2LYEN.WYDB,TWWB,TWW         10         784           945         2009-0240 162325.00         53.375         6.741         3.0         1.66         ZLYEN.WDB,SWEN.HWF         10         784           947         2009-0240 155:12325         53.327         6.803         3.00         1.42         ZLYEN.WDB,SWEN.HWF         134         134           949         2009-022 1156:21630         53.118         6.6467         3.00         1.07         ELYEN.WDB,SW,MDB         134         114           900         2009-022 610:214950         53.118         6.647         3.0         1.07         HWF,SW,WDB,HWF,ZU         174         138         134           901         2009-022 610:214950         53.118         6.647         3.0         1.07         HWF,SW,WDB,HWF,ZU         134         144           903         2009-024 613:31:320         53.118         6.647         3.0         0.1         HWF,SW,WDB,HWF,ZU         132         133         144           903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 491 | 2009-01-15 12:41:13.360 | 53.3388  | 6.8717    | 3.0        | 1.03      | FSW,ENM,ZLV,WDB                   | 97       | 109       |
| 493         2009-02-01 04:23:24.160         53.3598         6.7400         3.0         2.23         WDB,HWF,ENM,FSW,ZLV,ENV,VBG,VLW         65         17.3           494         2009-02.40 16:23:50.07         53.3170         6.7417         3.0         1.16         CZUV,MDB,FWE,INH,HWF         15         13.4           495         2009-02.05 11:51:250         53.3275         6.233         3.0         1.06         CZUV,MM,DB,FWE,MH,HWF         174         133           498         2009-02.23 11:62:15.00         53.118         6.6467         3.0         0.76         CZUV,ENV,MDB,FWE,HWH         144         144           501         2009-02.23 11:62:15.490         53.118         6.6467         3.0         0.76         CZUV,FW,WDB         143         148           502         2009-02.35 3:3:420         53.118         6.6467         3.0         1.07         HWF,FW,ULZU,FW,WDB         134         144           502         2009-02.35 3:3:420         53.3178         6.6471         3.0         1.21         EMM,FSW,ULW,ULV,FW,WDB         134         144           503         2009-02.41 4:3:2:1:5:0         53.1178         6.6471         3.0         1.21         EMM,FSW,ULW         131         144         145         150         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 492 | 2009-01-17 06:05:03.640 | 53,1703  | 6,7950    | 3.0        | 1.15      | ENM.ZLV.HWE.WDB.ENV.FSW.VLW       | 118      | 139       |
| 14         2009-02-03 665352.070         53.3147         6.8750         7.1         FSW.ZLV,FMM, MDB         1.0         7.8           495         2009-02-04 12:350.02         53.3760         6.4717         3.0         1.66         ZLV,MDB,FSW, FW, FW         9         59           497         2009-02-16 195:12-50         53.3275         6.6020         3.0         1.42         ZLV,ENLWMDB,FSW, FW         124         133           498         2009-02-21 1562:65         53.1180         6.6467         3.0         0.76         CLV,ENLWDB,FSW, FW         114         143           500         2009-02-26 10:31:1280         53.1181         6.6467         3.0         0.75         FMWF,FSW,VUW,ZLV,ENVWDB         118         148           501         2009-02-26 01:31:1280         53.1181         6.6467         3.0         0.72         CLV,WDB         38         103           502         2009-03:14 15:32:16:310         53.1187         6.6467         3.0         0.32         CLV,WDB         134         144           502         2009-03:14 2:0:0:13:03         6.517         3.0         0.53         2LV,WDB         124         175           503         2009-03:17 0:3:0:12:0         53.1180         6.6483         3.0 </td <td>493</td> <td>2009-02-01 04:23:24 160</td> <td>53 3598</td> <td>6 7400</td> <td>3.0</td> <td>2.23</td> <td>WDB HWE ENM ESW ZI V ENV VBG VI W</td> <td>65</td> <td>173</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 493 | 2009-02-01 04:23:24 160 | 53 3598  | 6 7400    | 3.0        | 2.23      | WDB HWE ENM ESW ZI V ENV VBG VI W | 65       | 173       |
| 199         2009-0240         123-147         0.02         1.17         1.19         1.19         1.19           495         2009-0240         1123-02         53.370         6.7417         3.0         1.66         2LVUNDE,FSWLHWF         1.14         133           496         2009-0240         113-66         3.0         1.42         2LVUNDE,FSWLHWF         1.43         134           498         2009-0223         113-66         6.4647         3.0         0.76         2LVENNUDE,FSWLHWF         1.43         114           501         2009-022-60         53.118         6.6467         3.0         0.78         2LVENVDB         1.14         1.93           501         2009-022-60         33.118         6.6467         3.0         0.78         2LVENVDB         1.13         1.14           502         2009-023-143.323.220         53.3497         6.6471         3.0         0.72         WDB,FNVLVU         1.33         1.42           503         2009-0414 1532:6.501         53.118         6.6433         3.0         0.78         2LVMDB         7.14         1.93           504         2009-017 0.36:5.04         53.116         6.6433         3.0         0.43         2LVMDB         1.14<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 404 | 2000-02-01 04.23.24.100 | 53.3330  | 6.9750    | 3.0        | 1 17      |                                   | 101      | 70        |
| 499         2009-02401 (22:330:02)         33.270         6.407         4.30         1.66         21.4000, 21.000, 205, 133.275         6.3233         3.00         1.60         21.400, 205, 205, 205, 205, 205, 205, 205, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 494 | 2009-02-03 06.33.32.070 | 55.5147  | 0.8750    | 5.0        | 1.17      | FSW,ZLV,ENW,WDB                   | 101      | 70        |
| 496         2009-02-05 11-5612.950         53.237         6.800         3.0         1.42         ZUVENM, WDE, FW, WF         99         95           497         2009-02-20 1562.650         53.237         6.800         3.0         0.76         ZUVENM, WDE, FW, WDB         55         92           499         2009-02-26 152:49580         53.118         6.6467         3.0         0.76         FW, WDE, HW, ZUVENW, WDB         118         114           501         2009-02-26 012:149580         53.118         6.6467         3.0         0.73         FW, WDB, HW, ZUVENW         118         148           501         2009-02-26 013:149580         53.118         6.6467         3.0         0.78         ZUVWDB         113         1414           503         2009-03-13 14.33:24.03         53.113         6.6467         3.0         0.78         ZUVWDB         132         171           504         2009-314 15:32:16.310         53.113         6.6483         3.0         0.53         ZUVWDB         752         616           507         2009-317 03:407:30         53.118         6.6483         3.0         0.53         ZUVWDB         553         124           501         2009-317 03:407:05         53.118         6.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 495 | 2009-02-04 12:23:50.020 | 53.3760  | 6.7417    | 3.0        | 1.66      | ZLV,WDB,FSW,ENM,HWF               | 95       | 134       |
| 497         2009-02-16 09:2455.58         53.180         66.467         3.0         0.76         ZULENM, WDB, FW, IWF         1.24         133           498         2009-02:21 155:26.50         53.1180         66.467         3.0         0.76         ZULEN, WUNB         1.13         1.14           500         2009-02:26 13:21:52.53         53.1183         66.467         3.0         0.73         FEW, WDB, HW, ZU, FEW, WDB         1.18         1.18           501         2009-02:26 33:31:53         66.467         3.0         0.72         EWM, FSW, ULV, ZU, VSW, WB         3.8         1.03           503         2009-314 15:32:16:310         53.119         66.647         3.0         0.12         WDB, EW, ZU         1.13         1.44           504         2009-03:14 15:32:16:310         53.1178         66.643         3.0         0.53         CULENM, SW, WDB, EW, ZU         1.23         1.75           505         2009-03:17 0:06:15:04         53.116         66.657         3.0         0.53         CULENM, SW, ZU, WDB, EW, ZU, WDB, WB, ZU, WDB         1.24         1.75           501         2009-03:17 0:33:407:300         53.112         66.6517         3.0         0.53         CULENM, SW, ZU, WDB, WW, ZU, WW, WDB, WW, ZU, WW, WDB, WW, ZU, WW, WDB, WW, ZU         1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 496 | 2009-02-05 11:56:12.950 | 53.3275  | 6.9233    | 3.0        | 1.06      | ZLV,ENM,WDB,FSW                   | 99       | 59        |
| 498         2009-02-22 11:65:26:650         53.1180         66:667         3.00         0.76         MUTE,SW,UK,UX,UKN,WDB         141           499         2009-02-26 10:21:45:80         53.1183         66:800         3.00         0.53         HWTE,SW,UK,UX,UKN,WDB         114         140           501         2009-02-26 00:21:45:80         53.1183         66:667         3.00         0.73         HWTE,ZW,SW,WDB         118         1418           501         2009-03:62 3:3:3:420         53.1183         66:667         3.00         0.78         CLUW,WDB         38         1.33           503         2009-03:14 15:3:2:16:310         53.1193         66:617         3.00         0.43         QLUW,WDB         1.32         1.75           506         2009-03:14 15:3:2:17.30         53.1180         66:643         3.00         0.63         QLWWDB,MME,WZ,W         132         1.75           506         2009-03:17 0:3:1500         53.1180         66:643         3.00         0.53         ENV,WDB,MME,WZ,W,WDB         1.12         1.75           501         2009-03:17 0:3:3:0:70         53.1180         66:643         3.00         0.53         ENV,WDB,MME,WZ,W,WDW         153         164           512         2009-03:17 18:3:0:3:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 497 | 2009-02-16 09:24:55.580 | 53.2977  | 6.8000    | 3.0        | 1.42      | ZLV,ENM,WDB,FSW,HWF               | 124      | 133       |
| 199         2009-02-23 183:18:09         53.1315         66.467         0.05         HWFFSW,VLW,ZU,KUN,WOB,         114         114           500         2009-02-26 01:03:15.250         53.1188         66.667         3.0         1.07         HWFFZU,FSW,WOB,         1.18         1.18           501         2009-02-26 03:03:15.250         53.1188         66.667         3.00         1.07         HWFFZU,FSW,WOB         1.18         1.18           502         2009-03:14 13:32:27.00         53.1193         66.617         3.00         1.02         MOBE,NV,2U         1.21         1.18           505         2009-03:14 13:32:27.00         53.118         66.637         3.00         0.53         2.009.01         7.12         1.18           506         2009-03:14 20:05:150         53.1180         6.6433         3.00         0.53         2.009.01         7.000         1.24         1.14           507         2009-03:17 0:06:15.00         53.118         6.6433         3.00         1.12         ZUWOBE,NM,FW,ZU,HWF,W         9.3         1.64           501         2009-03:17 0:06:15.00         53.1187         6.643         3.00         1.12         ZUWOB,NM,FW,ZU,HWF,W         9.3         1.64           511         2009-03:17 18:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 498 | 2009-02-22 11:56:26.650 | 53.1180  | 6.6467    | 3.0        | 0.76      | ZLV,ENV,WDB                       | 55       | 92        |
| 500         2009-02-26 01:21:49:580         53.1188         6.6500         3.0         0.53         FSW,WDB,HWF,ZLV         174         900           501         2009-02-26 00:31:520         53.1183         6.6467         3.0         1.07         HWF,ZLV,SW,WDB         38         103           503         2009-03:53:63:4262         53.1187         6.6467         3.0         0.78         ZLW,WDB         38         103           503         2009-31:41:53:216.310         53.1193         6.617         3.0         1.02         WDB,EW,ZLV         112         175           506         2009-03:14:15:32:7.07         53.1178         6.6433         3.0         0.98         WDB,EW,ZLV         132         175           506         2009-03:17:0:0:615.00         53.1126         6.6517         3.0         0.43         ZLW,WDB         124         134           509         2009-3:17:0:3:8:27.01         53.1188         6.643         3.0         0.53         ZLW,WDB,EMK,FXU,WDB         95         164           510         2009-3:17:0:4:3:27.00         53.1187         6.6433         3.0         0.53         ZLW,WDB         154         134           511         2009-3:17:1:6:4:5:50         53.1197         6.6433 <td>499</td> <td>2009-02-23 18:03:15.490</td> <td>53.1315</td> <td>6.8300</td> <td>3.0</td> <td>0.95</td> <td>HWF,FSW,VLW,ZLV,ENV,WDB</td> <td>143</td> <td>114</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 499 | 2009-02-23 18:03:15.490 | 53.1315  | 6.8300    | 3.0        | 0.95      | HWF,FSW,VLW,ZLV,ENV,WDB           | 143      | 114       |
| S00         2009-02-26 03:03:15.250         S3.1183         6.6467         G.0         0.78         HWF_ZLV,FSW,WDB         118         148           S02         2009-03-05 23:63:4620         S3.1187         6.6467         G.0         0.78         ZUYWDB         138         103           S02         2009-03-13 14:33:228.0         S3.3197         6.6467         G.0         1.02         WDB,ENVZLV         121         187           S05         2009-03-14 15:32:7.700         S3.1178         6.6433         G.0         0.53         ZUYWDB         75         61           S06         2009-03-17 0:06:15.040         S3.1120         6.6483         G.0         G.0         ZUYWDB         72         78           S07         2009-03-17 0:06:15.040         S3.1188         6.6483         G.0         G.0         ZUYWDB,ENK,EV/LV,HVF,VW         93         164           S08         2009-03-17 0:32:52.200         S3.1188         6.6483         G.0         G.0         ZUYWDB,ENK,EV/LVHVF,VW         93         164           S11         2009-03-17 18:45:50         S3.1187         6.6533         G.0         G.0         ZUYWDB         178         178           S1200         009-0317 19:1:16:30         S3.1187         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500 | 2009-02-26 01:21:49 580 | 53 1188  | 6 6500    | 3.0        | 0.53      | ESW WDB HWE ZI V                  | 174      | 90        |
| 301         2009-020-023/35/34/00         53.1103         6.6467         3.0         7.87         11.01         11.01         11.01         11.01           503         2009-0213/33/324.00         53.1497         6.6407         3.0         1.21         ENN.FSW.ZLY.WDB         113         1144           504         2009-0314 15:32:27.700         53.1193         6.6433         3.0         0.98         WDB.ENV.ZLV         121         1875           506         2009-0314 15:32:27.700         53.1178         6.6433         3.0         0.98         WDB.ENV.ZLV         122         175           506         2009-0317 00:31:050         53.1105         6.6517         3.0         0.43         ZLY.WDB         176         164           509         2009-0317 00:32:220         53.1188         6.6483         3.0         1.12         ZLY.WDB         176         176           510         2009-0317 16:34:55.070         53.1182         6.6517         3.0         0.50         ZLY.WDB         114         148           512         2009-0317 16:34:55.070         53.1182         6.6517         3.0         0.53         ZLY.WDB         114         148           513         2009-0317 16:04:33.1020         6.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 501 | 2009-02-26 03:03:15 250 | 53 1183  | 6 6467    | 3.0        | 1.07      | HWE ZI V ESW WDB                  | 118      | 1/18      |
| 300         200903-0236236346.20         53.187         6.647         3.0         0.78         CLUMOB         CLUMOB         131         144           503         200903-14 1532227.00         53.1193         6.6517         3.0         1.02         WDB,ENV,ZLV         121         187           505         200903-14 153227.00         53.1186         6.6433         3.0         0.98         WDB,ENV,ZLV         122         175           506         200903-17 00505.50         53.1160         6.6567         3.0         0.43         ZLVWDB         124         134           508         200903-17 0032407.360         53.120         6.6483         3.0         0.43         ZLVWDB,ENM,FSW,ZLV,HWF,VLW         30         1.12           20090-317 033247.210         53.1188         6.6483         3.0         0.50         ZLWWDB,ENM,FSW,ZLV,HWF,VLW         31         164           511         2009-03-17 163455.070         53.1182         6.647         3.0         0.53         ZLWWDB         113         114           513         2009-03-17 183407.500         53.1187         6.6483         3.0         0.53         ZLWWDB         115         116           514         2009-03-17 1910.15.50         53.1197         6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 501 | 2009-02-20 03:03:13:230 | 53.1183  | 0.0407    | 3.0        | 1.07      |                                   | 118      | 140       |
| 503         2009-03-14         32.3420         53.349         6.9017         3.00         1.21         1113         1143           504         2009-03-14         153.3105         53.1193         6.6433         3.00         0.98         WDB,ENV,ZLV         132         1135           505         2009-03-14         53.227.700         53.1175         6.6433         3.00         0.53         WDB,ENV,ZLV         132         1575           506         2009-03-17 03:06:15.900         53.1202         6.6483         3.00         0.43         ENV,WDB,ENM,FSW,ZLV,WDB         752         616           509         2009-03-17 03:407.360         53.1182         6.6517         3.00         0.43         ENV,WDB,ENM,FSW,ZLV,WDB         933         164           511         2009-03-17 06:32:52.20         53.1182         6.6517         3.00         0.53         ZLV,WDB         153         86           511         2009-03-17 18:45:507         53.1182         6.6517         3.00         0.53         ZLV,WDB         113         114           513         2009-03-17 18:45:070         53.1182         6.6483         3.00         0.53         ZLV,WDB         1153         1164           514         2009-03-17 19:16:3500 <td>502</td> <td>2009-03-05 23:36:34.620</td> <td>53.1187</td> <td>6.6467</td> <td>3.0</td> <td>0.78</td> <td>ZLV,WDB</td> <td>38</td> <td>103</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 502 | 2009-03-05 23:36:34.620 | 53.1187  | 6.6467    | 3.0        | 0.78      | ZLV,WDB                           | 38       | 103       |
| 504         2009-03-14 15:32:16,310         53.1193         6.6517         3.0         1.02         WDB,ENV,ZLV         121         1175           505         2009-03-14 15:32:27.00         53.1178         6.6433         3.0         0.98         WDB,ENV,ZLV         121         1175           506         2009-03-14 20:105:1950         53.1176         6.6467         3.0         0.53         ZLV,WDB         124         134           507         2009-03-17 00:06:15.040         53.1215         6.6617         3.0         0.43         ENV,WDB,ENM,FSW,ZLV,HWF,SW         93         164           509         2009-03-17 06:32:52.20         53.1188         6.6483         3.0         1.12         ENV,WDB,ENM,FSW,ZLV,HWF,SW         93         164           510         2009-03-17 06:32:52.20         53.1187         6.6637         3.0         0.50         ZLV,WDB,ENM,FSW,ZLV,HWF,SW         93         164           511         2009-03-17 06:32:52.20         53.1187         6.6637         3.0         0.53         ZLV,WDB,ENM,FSW,ZLV,HWF,SW         114         148           512         2009-03-17 19:10:4550         53.1197         6.6433         3.0         0.53         ZLV,WDB         102         1155           512         2009-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 503 | 2009-03-13 14:33:32.820 | 53.3497  | 6.9017    | 3.0        | 1.21      | ENM,FSW,ZLV,WDB                   | 113      | 144       |
| 15052009-03-14153.1786.64333.00.98VDB_KNZLV1121755062009-03-1753.11056.63673.00.53ZLVWDB721345072009-03-1753.12056.64833.00.50ZLVWDB1241345082009-03-1753.12026.64833.00.50ZLVWDB52785092009-03-176.522.22053.11886.64833.01.18ENV,WDB,ENM,FSW,ZLV,HWF,LW931645102009-03-176.522.22053.11886.64833.001.12ZLVWDB163985122009-03-1753.11876.65333.000.53ZLVWDB1141485132009-03-1753.11976.64833.000.59ZLVWDB1141485142009-03-1719:10:3.50053.12026.64833.000.53WDB,ZLV1531045152009-03-1719:10:3.50053.12026.64833.000.93WDB,ZLV1531045162009-03-1719:10:3.50053.12026.64833.000.93WDB,ZLV1531045172009-03-1719:10:3.50053.12026.64833.000.93WDB,ZLV1531045162009-03-1719:10:3.50053.12036.65173.00.668ZLVWDB1541245212009-03-1719:10:3.50053.1206.65173.00.66ZL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 504 | 2009-03-14 15:32:16.310 | 53.1193  | 6.6517    | 3.0        | 1.02      | WDB,ENV,ZLV                       | 121      | 187       |
| 506         2009-03-14 20:10:51.900         53.1160         6.6367         3.0         0.53         CLV,WDB         75         61           507         2009-03-17 00:36:15.040         53.1215         6.6517         3.0         0.43         CLV,WDB         124         134           508         2009-03-17 00:34:07.360         53.1226         6.6483         3.0         0.53         ENV,WDB,ENM,FSW,ZU,HWF,LW         93         164           510         2009-03-17 06:32:52.22         53.1188         6.6483         3.0         1.12         ENV,WDB,ENM,FSW,ZU,HWF,LW         93         1643           511         2009-03-17 16:34:55.070         53.1182         6.6517         3.0         0.53         CLV,WDB         114         148           512         2009-03-17 18:40:09.260         53.1187         6.6453         3.0         0.53         CLV,WDB         114         148           513         2009-03-17 19:10:35.00         53.1202         6.6483         3.0         0.33         WDB_ZLV         136         121           515         2009-03-17 19:10:32.000         53.1202         6.6483         3.0         0.93         WDB_ZLV         169         88           516         2009-03-17 19:10:3:5.400         53.1202 <td>505</td> <td>2009-03-14 15:32:27.700</td> <td>53.1178</td> <td>6.6433</td> <td>3.0</td> <td>0.98</td> <td>WDB,ENV,ZLV</td> <td>132</td> <td>175</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 505 | 2009-03-14 15:32:27.700 | 53.1178  | 6.6433    | 3.0        | 0.98      | WDB,ENV,ZLV                       | 132      | 175       |
| 507         2009-03-17 00:06:15.040         53.1215         6.6517         3.0         0.43         ZLV,WDB         124         134           508         2009-03-17 03:34:07.360         53.1202         6.6483         3.0         0.50         ZLV,WDB         52         78           509         2009-03-17 03:34:27.410         53.1188         6.6483         3.0         1.12         ENV,WDB,ENM,FSW,ZLV,HWF,UW         93         164           511         2009-03-17 16:34:55.070         53.1182         6.6517         3.0         0.50         ZLV,WDB         114         148           512         2009-03-17 18:30:92.00         53.1187         6.6433         3.0         0.59         ZLV,WDB         114         148           513         2009-03-17 18:40:92.60         53.1187         6.6433         3.0         0.59         ZLV,WDB         114         148           514         2009-03-17 19:10:49.30         53.1197         6.6483         3.0         0.93         WDB,ZLV         153         104           516         2009-03-17 19:10:49.30         53.120         6.6483         3.0         0.96         ZLV,WDB         155         105           517         2009-03-17 19:10:10:49.30         53.120         6.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 506 | 2009-03-14 20:10:51.950 | 53.1160  | 6.6367    | 3.0        | 0.53      | ZLV,WDB                           | 75       | 61        |
| 508         2009-03-17 03:34:07.360         53.1202         6.6483         3.0         0.50         ZLV,WDB         52         78           509         2009-03-17 04:38:27.410         53.1188         6.6483         3.0         1.38         ENV,WDB,ENM,FSW,ZLV,HWF,VLW         93         164           510         2009-03-17 06:32:52.220         53.1182         6.6517         3.0         0.50         ZLV,WDB         163         98           511         2009-03-17 16:34:05.070         53.1182         6.6513         3.0         0.53         ZLV,WDB         114         148           513         2009-03-17 18:40:09.260         53.1187         6.6483         3.0         0.59         ZLV,WDB         125         136           514         2009-03-17 19:10:16.500         53.1197         6.6483         3.0         0.93         WDB,ZLV         136         121           515         2009-03-17 19:10:13.600         53.1202         6.6483         3.0         0.93         WDB,ZLV         169         88           517         2009-03-17 19:10:15.400         53.1202         6.6483         3.0         0.96         ZLV,WDB         75           518         2009-03-17 19:10:15.400         53.1202         6.6483 <td< td=""><td>507</td><td>2009-03-17 00:06:15.040</td><td>53.1215</td><td>6.6517</td><td>3.0</td><td>0.43</td><td>ZLV.WDB</td><td>124</td><td>134</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 507 | 2009-03-17 00:06:15.040 | 53.1215  | 6.6517    | 3.0        | 0.43      | ZLV.WDB                           | 124      | 134       |
| Top         Top <thtop< th=""> <thtop< th=""> <thtop< th=""></thtop<></thtop<></thtop<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 508 | 2009-03-17 03:34:07.360 | 53,1202  | 6,6483    | 3.0        | 0.50      | ZIVWDB                            | 52       | 78        |
| 510         2009 0-317 (6:32:52:20)         53.1198         6.6483         3.0         1.12         CLV, WDB, LTV, HV, FM, ELV, HV, FM         93         6.64           511         2009 0-317 (6:32:52:20)         53.1182         6.6517         3.0         0.50         ZLV, WDB         163         98           512         2009 0-317 (8:39:57.72)         53.1187         6.6453         3.0         0.53         ZLV, WDB         114         148           513         2009 0-317 (8:40:0).260         53.1187         6.6483         3.0         0.59         ZLV, WDB         115         125         136           514         2009 0-317 (9:10:16.550         53.1197         6.6483         3.0         0.93         WDB_ZLV         136         121           515         2009 0-317 (9:10:49.310         53.1202         6.6483         3.0         0.93         WDB_ZLV         192         65           517         2009 0-317 (9:15:35.800         53.1202         6.6483         3.0         0.96         ZLV, WDB         115         146           520         2009 0-317 (9:15:35.800         53.1202         6.6483         3.0         0.96         ZLV, WDB         115         146           521         2009 0-317 (9:15:45.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 509 | 2009-03-17 04-38-27 /10 | 53 1188  | 6 6/83    | 3.0        | 1 32      | ENV WOR ENM ESW 71 V HWE VI W     | 02       | 164       |
| 112009-03-170.03.2.2.2.0053.11930.04035.001.122LV,WDB195675112009-03-1716.3455.07053.11826.65173.00.53ZLV,WDB11411485132009-03-1718.3957.72053.11936.64503.00.59ZLV,WDB11251365142009-03-1719.1016.55053.11976.64833.00.93WDB,ZLV1361215152009-03-1719.1016.55053.11976.64833.00.93WDB,ZLV1531045162009-03-1719.104.9.31053.12026.64833.00.93WDB,ZLV1531045172009-03-1719.111.2.38053.12006.64833.00.96ZLV,WDB76575182009-03-1719.15.35.80053.12026.64833.00.96ZLV,WDB1151465202009-03-1719.278.41153.12026.64833.00.96ZLV,WDB1151465212009-03-1719.278.413.2053.11976.65003.00.68ZLV,WDB1351265222009-03-1719.278.413.2053.11876.65173.00.79ZLV,WDB1511425222009-03-1712.28.51.49053.11876.65173.00.79ZLV,WDB1511225232009-03-1818.16.45.08053.11886.64573.00.86WDB,ZLV153104<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510 | 2000 02 17 04.30.27.410 | 52 1100  | 6 6 4 9 2 | 3.0        | 1.50      |                                   | 05       | 67        |
| 5112009-03-17 16:34:5.0/053.11826.65173.00.50ZLV,WDB163985122009-03-17 18:39:57.72053.11936.65333.00.53ZLV,WDB1141485132009-03-17 18:00:9.26053.11976.64503.00.59ZLV,WDB1251365142009-03-17 19:10:16.55053.11976.64833.00.93WDB,ZLV1361145152009-03-17 19:10:3.60053.12026.64833.00.93WDB,ZLV169885172009-03-17 19:10:3.60053.12026.64833.00.93WDB,ZLV192655182009-03-17 19:16:1.5.04053.12026.64833.00.96ZLV,WDB1151465202009-03-17 19:16:1.5.04053.12026.64833.00.96ZLV,WDB1151465212009-03-17 19:26:4.12053.12036.65073.00.68ZLV,WDB1151465222009-03-17 19:28:4.132053.11976.65073.00.68ZLV,WDB1351265232009-03-17 21:28:51.49053.12036.65173.00.68WDB,ZLV1341235242009-03-17 12:28:51.49053.11876.65173.00.68WDB,ZLV1341235252009-03-17 21:28:51.49053.11876.65173.00.64WDB,ZLV1341235242009-03-18 18:27:18.77053.11876.65173.00.64 <td< td=""><td>510</td><td>2005-03-17 00.52:52.220</td><td>53.1198</td><td>0.0483</td><td>3.0</td><td>1.12</td><td></td><td>95</td><td>0/</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 510 | 2005-03-17 00.52:52.220 | 53.1198  | 0.0483    | 3.0        | 1.12      |                                   | 95       | 0/        |
| 5122009-03-171839:57.72053.11936.65333.00.532LV,WDB1141485132009-03-171840:09.26053.11876.64503.00.59ZLV,WDB1251365142009-03-1719:10:16.55053.11976.64833.00.93WDB,ZLV1531045162009-03-1719:10:33.60053.12026.64833.00.93WDB,ZLV169885172009-03-1719:10:49.31053.1206.64833.00.93WDB,ZLV192655182009-03-1719:15:5.80053.1206.64833.00.96ZLV,WDB76575192009-03-1719:15:5.80053.12026.64833.00.96ZLV,WDB1151465202009-03-1719:27:36.41053.11976.65003.00.68ZLV,WDB1551055212009-03-1719:27:36.41053.11976.65003.00.68ZLV,WDB1351265222009-03-1721:28:51.49053.11976.65173.00.68WDB,ZLV1531045242009-03-1721:28:51.49053.11876.65173.00.86WDB,ZLV1531045242009-03-1818:42:63.947053.11856.65173.00.86WDB,ZLV1531141235262009-03-1818:42:42:8953.11856.65173.00.64WDB,ZLV134123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 511 | 2009-03-17 16:34:55.070 | 53.1182  | 6.6517    | 3.0        | 0.50      | ZLV,WDB                           | 163      | 98        |
| 5132009-03-17 18:40:09.26053.11876.64503.00.59ZLV,WDB1251365142009-03-17 19:10:16.55053.11976.64833.00.93WDB,ZLV1361215152009-03-17 19:10:3.60053.12026.64833.00.93WDB,ZLV169885162009-03-17 19:10:49.30053.12026.64833.00.93WDB,ZLV1926555182009-03-17 19:11:2.38053.12026.64833.000.96ZLV,WDB765775192009-03-17 19:15:3.50053.12026.64833.000.96ZLV,WDB1151465202009-03-17 19:27:36.41053.11956.65003.00.66ZLV,WDB1151465212009-03-17 19:27:36.41053.11976.65003.00.68ZLV,WDB2214005222009-03-17 19:28:41.32053.11976.65173.00.68ZLV,WDB2214005232009-03-17 22:42:67.9053.11876.65173.00.68ZLV,WDB1531045232009-03-18 18:16:45.08053.11886.65033.00.68WDB,ZLV1331145252009-03-18 18:16:45.08053.11886.65073.00.64WDB,ZLV1341125262009-03-18 18:16:45.08053.11886.65173.00.64WDB,ZLV1451145272009-03-20 12:07:48.8053.11886.65173.00.64 <t< td=""><td>512</td><td>2009-03-17 18:39:57.720</td><td>53.1193</td><td>6.6533</td><td>3.0</td><td>0.53</td><td>ZLV,WDB</td><td>114</td><td>148</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 512 | 2009-03-17 18:39:57.720 | 53.1193  | 6.6533    | 3.0        | 0.53      | ZLV,WDB                           | 114      | 148       |
| 5142009-03-17 19:10:16:55053.11976.64833.00.93WDB,ZLV1361215152009-03-17 19:10:33.60053.12026.64833.00.93WDB,ZLV1531045162009-03-17 19:10:49.31053.11986.64673.00.93WDB,ZLV169885172009-03-17 19:11:12.38053.12006.64833.01.01WDB,ZLV192655182009-03-17 19:15:35.80053.12006.64833.00.96ZLV,WDB76575192009-03-17 19:27:64:10.4053.12026.64833.00.96ZLV,WDB1151465212009-03-17 19:27:36:41.2053.11976.65003.00.668ZLV,WDB1351265222009-03-17 19:28:41.32053.11976.65173.00.68ZLV,WDB1351265232009-03-17 21:28:51.49053.12036.65173.00.79ZLV,WDB1351265242009-03-18 18:26:39.47053.11876.65173.00.68WDB,ZLV1531045252009-03-18 18:27:18.77053.11976.65173.00.64WDB,ZLV1341235262009-03-18 18:27:18.77053.11886.64073.00.52ZLV,WDB1401195282009-03-20 21:37:48.6053.1886.64173.00.52ZLV,WDB1401195282009-03-20 21:37:48.6053.12026.64833.00.59 <td>513</td> <td>2009-03-17 18:40:09.260</td> <td>53.1187</td> <td>6.6450</td> <td>3.0</td> <td>0.59</td> <td>ZLV,WDB</td> <td>125</td> <td>136</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 513 | 2009-03-17 18:40:09.260 | 53.1187  | 6.6450    | 3.0        | 0.59      | ZLV,WDB                           | 125      | 136       |
| 5152009-03-17 19:10:33.60053.12026.64833.00.93WDB,LV1531045162009-03-17 19:10:49.31053.11986.64673.00.93WDB,LV169885172009-03-17 19:11:12.38053.1206.64833.01.01WDB,LV1926555182009-03-17 19:15:35.80053.12006.64833.00.96ZLV,WDB76575192009-03-17 19:16:15.04053.12026.64833.00.96ZLV,WDB1151465202009-03-17 19:27:36.41053.11976.65003.00.68ZLV,WDB122405212009-03-17 21:28:51.49053.11976.65173.01.06ZLV,WDB1351265232009-03-17 21:28:51.49053.11876.65173.00.79ZLV,WDB1531045242009-03-18 14:26:39.47053.11876.65173.00.86WDB,ZLV1531045252009-03-18 18:16:45.08053.11886.65003.00.85WDB,ZLV1341235262009-03-18 18:27:18.77053.11976.65173.00.64WDB,ZLV1281295272009-03-20 21:07:48.66053.11886.64173.00.59ZLV,WDB1401195282009-03-20 21:07:48.66053.11856.64503.00.59ZLV,WDB96455302009-03-20 21:37:48.46053.12026.64833.00.59ZLV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 514 | 2009-03-17 19:10:16.550 | 53.1197  | 6.6483    | 3.0        | 0.93      | WDB,ZLV                           | 136      | 121       |
| 5162009-03-17 19:10:49.31053.11986.64673.00.93WDB,ZLV169885172009-03-17 19:11:12.38053.1206.64833.01.01WDB,ZLV192655182009-03-17 19:15:35.80053.1206.64833.00.96ZLV,WDB76575192009-03-17 19:16:15.04053.12026.64833.00.96ZLV,WDB1151465202009-03-17 19:27:36.41053.11956.65003.00.68ZLV,WDB1561055212009-03-17 19:28:41.32053.11976.65003.00.68ZLV,WDB1351265222009-03-17 21:28:51.49053.12036.65173.01.06ZLV,WDB1351265232009-03-17 22:42:06.79053.11876.65173.00.79ZLV,WDB1351265242009-03-18 18:26:43.947053.11956.65333.00.86WDB,ZLV1341235252009-03-18 18:27:18.77053.11886.65003.00.64WDB,ZLV1341235262009-03-18 18:27:18.77053.11886.64173.00.52ZLV,WDB1401115292009-03-20 21:07:48.6053.11886.64503.00.59ZLV,WDB86455302009-03-20 21:37:48.4053.12026.64833.00.59XLV,WDB86455312009-03-20 21:37:48.4053.12026.64503.00.59XLV,W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 515 | 2009-03-17 19:10:33.600 | 53.1202  | 6.6483    | 3.0        | 0.93      | WDB,ZLV                           | 153      | 104       |
| 517         2009-03-17 19:11:12.380         53.1210         6.6483         3.0         1.01         WDB,ZLV         192         65           518         2009-03-17 19:15:35.800         53.1200         6.6483         3.0         0.96         ZLV,WDB         76         57           519         2009-03-17 19:15:35.800         53.1202         6.6483         3.0         0.96         ZLV,WDB         115         146           520         2009-03-17 19:27:36.410         53.1195         6.6500         3.0         0.68         ZLV,WDB         156         105           521         2009-03-17 19:28:41.320         53.1197         6.6500         3.0         0.68         ZLV,WDB         135         126           522         2009-03-17 21:28:51.490         53.1203         6.6517         3.0         1.06         ZLV,WDB         135         126           523         2009-03-18 18:26:39.470         53.1187         6.6517         3.0         0.79         ZLV,WDB         51         82           524         2009-03-18 18:16:45.080         53.1188         6.6500         3.0         0.85         WDB,ZLV         134         123           526         2009-03-18 18:27:18.770         53.1186         6.6417         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 516 | 2009-03-17 19:10:49.310 | 53.1198  | 6.6467    | 3.0        | 0.93      | WDB.ZLV                           | 169      | 88        |
| S18         2009-03-17 19:15:35.800         53.1200         6.6483         3.0         0.96         ZLV,WDB         76         57           518         2009-03-17 19:15:35.800         53.1200         6.6483         3.0         0.96         ZLV,WDB         76         57           520         2009-03-17 19:27:36.410         53.1200         6.6500         3.0         0.66         ZLV,WDB         115         146           521         2009-03-17 19:27:36.410         53.1195         6.6500         3.0         0.68         ZLV,WDB         135         126           522         2009-03-17 19:28:41.320         53.1197         6.6517         3.0         1.06         ZLV,WDB         135         126           523         2009-03-17 22:42:06.790         53.1187         6.6517         3.0         0.79         ZLV,WDB         51         82           524         2009-03-18 14:26:39.470         53.1185         6.6500         3.0         0.86         WDB_ZLV         153         104           525         2009-03-18 18:27:18.770         53.1185         6.6517         3.0         0.64         WDB_ZLV         134         123           526         2009-03-18 18:27:18.770         53.1185         6.6417 <t< td=""><td>517</td><td>2009-03-17 19:11:12 380</td><td>53 1210</td><td>6 6/83</td><td>3.0</td><td>1.01</td><td></td><td>102</td><td>65</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 517 | 2009-03-17 19:11:12 380 | 53 1210  | 6 6/83    | 3.0        | 1.01      |                                   | 102      | 65        |
| 5162009-03-1719:10:35:00055:12006.04633.00.962LV,WDB76575192009-03-1719:16:15.04053.12026.64833.00.962LV,WDB1151465202009-03-1719:27:36.41053.11956.65003.00.682LV,WDB521055212009-03-1719:28:41.32053.11976.65003.00.682LV,WDB1351265222009-03-1721:28:51.49053.12036.65173.01.062LV,WDB1351265232009-03-1722:42:06.79053.11876.65173.00.792LV,WDB51825242009-03-1818:16:45.08053.11886.65003.00.86WDB,ZLV1341235252009-03-1818:16:45.08053.11886.65173.00.64WDB,ZLV1341235262009-03-1818:12:17:48.80053.11886.65173.00.64WDB,ZLV1281295272009-03-2021:37:48.40053.11886.64173.00.59ZLV,WDB1401115282009-03-2021:37:48.40053.12026.64833.00.59ZLV,WDB96455302009-03-2021:37:48.40053.12026.64833.00.59ZLV,WDB231095312009-03-2021:37:48.40053.12026.64833.00.59ZLV,WDB24111 <tr< td=""><td>E10</td><td>2000 02 17 10:11.12.300</td><td>52 1200</td><td>6.6400</td><td>5.0</td><td>0.00</td><td>71/0/00</td><td>70</td><td>55</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E10 | 2000 02 17 10:11.12.300 | 52 1200  | 6.6400    | 5.0        | 0.00      | 71/0/00                           | 70       | 55        |
| 5192009-03-17 19:10:15.04053.12026.64833.00.96ZLV,WDB1151465202009-03-17 19:27:36.41053.11956.65003.00.68ZLV,WDB1561055212009-03-17 19:28:41.32053.11976.65003.00.68ZLV,WDB221405222009-03-17 21:28:51.49053.12036.65173.01.06ZLV,WDB1351265232009-03-17 22:42:06.79053.11876.65173.00.79ZLV,WDB51825242009-03-18 14:26:39.47053.11956.65333.00.86WDB,ZLV1531045252009-03-18 18:16:45.08053.11886.65003.00.85WDB,ZLV1341235262009-03-18 18:27:18.77053.11976.65173.00.64WDB,ZLV1281295272009-03-20 21:07:48.86053.11886.64173.00.59ZLV,WDB1401195282009-03-20 21:30:22.62053.12026.64673.00.48ZLV,WDB9.0415292009-03-20 21:30:22.62053.12026.64833.00.59ZLV,WDB86455312009-03-20 21:37:48.46053.12026.64833.00.59ZLV,WDB231095312009-03-20 22:48:15.16053.12036.65503.00.37ZLV,WDB23109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 518 | 2009-05-17 19:15:35.800 | 53.1200  | 0.0483    | 3.0        | 0.96      | 2LV,WDB                           | /6       | 5/        |
| 5202009-03-17 19:27:36.41053.11956.65003.00.68ZLV,WDB1561055212009-03-17 19:28:41.32053.11976.65003.00.68ZLV,WDB221405222009-03-17 21:28:51.49053.12036.65173.01.06ZLV,WDB1351265232009-03-17 22:42:06.79053.11876.65173.00.79ZLV,WDB51825242009-03-18 14:26:39.47053.11956.65333.00.86WDB,ZLV1331045252009-03-18 18:27:18.77053.11876.65173.00.64WDB,ZLV1341235262009-03-18 18:27:18.77053.11876.65173.00.64WDB,ZLV1341235272009-03-20 21:07:48.86053.11886.64173.00.52ZLV,WDB1401195272009-03-20 21:07:48.86053.11856.64503.00.59ZLV,WDB904115292009-03-20 21:30:22.62053.12006.64673.00.59ZLV,WDB86455302009-03-20 21:37:48.46053.12026.64833.00.59WDB,ZLV14611115312009-03-20 22:48:15.16053.12036.65503.00.37ZLV,WDB23109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 519 | 2009-03-17 19:16:15.040 | 53.1202  | 6.6483    | 3.0        | 0.96      | ZLV,WDB                           | 115      | 146       |
| 521         2009-03-17 19:28:41.320         53.1197         6.6500         3.0         0.68         ZLV,WDB         221         40           522         2009-03-17 21:28:51.490         53.1203         6.6517         3.0         1.06         ZLV,WDB         135         126           523         2009-03-17 22:42:06.790         53.1187         6.6517         3.0         0.79         ZLV,WDB         51         82           524         2009-03-18 14:26:39.470         53.1185         6.6533         3.0         0.86         WDB,ZLV         153         104           525         2009-03-18 18:27:18.770         53.1188         6.6500         3.0         0.86         WDB,ZLV         134         123           526         2009-03-18 18:27:18.770         53.1188         6.6517         3.0         0.62         WDB,ZLV         134         123           526         2009-03-20 21:07:48.660         53.1188         6.6417         3.0         0.62         ZLV,WDB         104         119           528         2009-03-20 21:07:48.600         53.1185         6.6457         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 520 | 2009-03-17 19:27:36.410 | 53.1195  | 6.6500    | 3.0        | 0.68      | ZLV,WDB                           | 156      | 105       |
| 5222009-03-17 21:28:51.49053.12036.65173.01.06ZLV,WDB1351265232009-03-17 22:42:06.79053.11876.65173.00.79ZLV,WDB51825242009-03-18 14:26:39.47053.11956.65333.00.86WDB,ZLV1531045252009-03-18 18:16:45.08053.11886.65003.00.85WDB,ZLV1341235262009-03-18 18:27:18.77053.11976.65173.00.64WDB,ZLV1281295272009-03-20 21:07:48.60053.11886.64173.00.59ZLV,WDB1401195282009-03-20 12:07:48.40053.12006.64673.00.48ZLV,WDB86455302009-03-20 21:37:48.40053.12026.64833.00.59ZLV,WDB1461115312009-03-20 22:48:15.16053.12036.65503.00.37ZLV,WDB23109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 521 | 2009-03-17 19:28:41.320 | 53.1197  | 6.6500    | 3.0        | 0.68      | ZLV,WDB                           | 221      | 40        |
| 523         2009-03-17 22:42:06.790         53.1187         6.6517         3.0         0.79         ZLV,WDB         51         82           524         2009-03-18 14:26:39.470         53.1195         6.6533         3.0         0.86         WDB,ZLV         153         104           525         2009-03-18 18:16:45.080         53.1188         6.6500         3.0         0.86         WDB,ZLV         134         123           526         2009-03-18 18:27:18.770         53.1197         6.6517         3.0         0.64         WDB,ZLV         128         129           527         2009-03-20 21:07:48.60         53.1188         6.6417         3.0         0.59         ZLV,WDB         140         119           528         2009-03-20 21:21:54.820         53.1185         6.6450         3.0         0.59         ZLV,WDB         140         119           528         2009-03-20 21:31:42.620         53.1200         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         ZLV,WDB         86         451           531         2009-03-20 22:48:15.160         53.1203         6.6550 <t< td=""><td>522</td><td>2009-03-17 21:28:51.490</td><td>53.1203</td><td>6.6517</td><td>3.0</td><td>1.06</td><td>ZLV,WDB</td><td>135</td><td>126</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 522 | 2009-03-17 21:28:51.490 | 53.1203  | 6.6517    | 3.0        | 1.06      | ZLV,WDB                           | 135      | 126       |
| 524         2009-03-18 14:26:39.470         53.1195         6.6533         3.0         0.86         WDB,ZLV         153         104           525         2009-03-18 18:16:45.080         53.1188         6.6500         3.0         0.86         WDB,ZLV         134         123           526         2009-03-18 18:27:18.770         53.1197         6.6517         3.0         0.64         WDB,ZLV         128         129           527         2009-03-20 21:07:48.860         53.1188         6.6417         3.0         0.52         ZLV,WDB         140         119           528         2009-03-20 21:07:48.860         53.1185         6.6450         3.0         0.59         ZLV,WDB         90         41           529         2009-03-20 21:07:48.460         53.1202         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         WDB,ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 523 | 2009-03-17 22:42:06.790 | 53.1187  | 6.6517    | 3.0        | 0.79      | ZLV.WDB                           | 51       | 82        |
| 525         2009-03-18 18:16:45.080         53.1188         6.6500         3.0         0.85         WDB,ZLV         134         123           525         2009-03-18 18:27:18.770         53.1197         6.6517         3.0         0.64         WDB,ZLV         128         129           527         2009-03-20 21:07:48.860         53.1188         6.6417         3.0         0.52         ZLV,WDB         140         119           528         2009-03-20 21:27:54.820         53.1185         6.6450         3.0         0.59         ZLV,WDB         90         41           529         2009-03-20 21:37:48.460         53.1200         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6450         3.0         0.59         WDB,ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 524 | 2009-03-18 14:26:39 470 | 53.1195  | 6.6533    | 3.0        | 0.86      | WDR 7I V                          | 153      | 104       |
| 526         2009-03-18 18:27:18.770         53.1197         6.6517         3.0         0.64         WDB_ZLV         128         129           527         2009-03-18 18:27:18.770         53.1197         6.6517         3.0         0.52         WDB_ZLV         128         129           527         2009-03-20 21:07:48.600         53.1185         6.6417         3.0         0.52         ZLV,WDB         109         119           528         2009-03-20 21:30:22.620         53.1185         6.6467         3.0         0.59         ZLV,WDB         86         45           529         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         WDB_ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 525 | 2009-03-18 18:16:45 090 | 53 1199  | 6 6500    | 3.0        | 0.85      |                                   | 13/      | 172       |
| 520         2005-03 16.27.16.770         53.1197         6.0517         3.0         0.04         WDB_LV         128         129           527         2009-03-20 21:07:48.860         53.1188         6.6417         3.0         0.52         ZLV,WDB         140         119           528         2009-03-20 21:21:54.820         53.1185         6.6450         3.0         0.59         ZLV,WDB         90         41           529         2009-03-20 21:30:22.620         53.1200         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         ZLV,WDB         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 525 | 2000 02 10 10.10.40.000 | 52 1107  | 6.6547    | 5.0        | 0.65      |                                   | 134      | 120       |
| 52/         2009-03-20 21:07:48.860         53.1188         6.641/         3.0         0.52         ZLV,WDB         140         119           528         2009-03-20 21:21:54.820         53.1185         6.6450         3.0         0.59         ZLV,WDB         90         41           529         2009-03-20 21:30:22.620         53.1200         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         WDB,ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 520 | 2009-05-16 18:27:18.770 | 55.1197  | 0.0517    | 3.0        | 0.64      | WDB,ZLV                           | 128      | 129       |
| 528         2009-03-20 21:21:54.820         53.1185         6.6450         3.0         0.59         ZLV,WDB         90         41           529         2009-03-20 21:30:22.620         53.1200         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         WDB,ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 527 | 2009-03-20 21:07:48.860 | 53.1188  | 6.6417    | 3.0        | 0.52      | ZLV,WDB                           | 140      | 119       |
| 529         2009-03-20 21:30:22.620         53.1200         6.6467         3.0         0.48         ZLV,WDB         86         45           530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         WDB,ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 528 | 2009-03-20 21:21:54.820 | 53.1185  | 6.6450    | 3.0        | 0.59      | ZLV,WDB                           | 90       | 41        |
| 530         2009-03-20 21:37:48.460         53.1202         6.6483         3.0         0.59         WDB,ZLV         146         111           531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 529 | 2009-03-20 21:30:22.620 | 53.1200  | 6.6467    | 3.0        | 0.48      | ZLV,WDB                           | 86       | 45        |
| 531         2009-03-20 22:48:15.160         53.1203         6.6550         3.0         0.37         ZLV,WDB         23         109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 530 | 2009-03-20 21:37:48.460 | 53.1202  | 6.6483    | 3.0        | 0.59      | WDB,ZLV                           | 146      | 111       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 531 | 2009-03-20 22:48:15.160 | 53.1203  | 6.6550    | 3.0        | 0.37      | ZLV,WDB                           | 23       | 109       |



| ID  | Origin time             | Latitude | Longitude | Depth [km] | Magnitude | Stations                                | Left [s] | Right [s] |
|-----|-------------------------|----------|-----------|------------|-----------|-----------------------------------------|----------|-----------|
| 532 | 2009-03-20 22:49:29.960 | 53.1168  | 6.6383    | 3.0        | 0.45      | ZLV,WDB                                 | 98       | 34        |
| 533 | 2009-03-21 04:31:35.700 | 53.1220  | 6.6483    | 3.0        | 0.16      | ZLV,WDB                                 | 112      | 86        |
| 534 | 2009-03-21 05:11:06.510 | 53.1200  | 6.6517    | 3.0        | 0.51      | WDB,ZLV                                 | 127      | 130       |
| 535 | 2009-03-22 00:32:19.110 | 53,1198  | 6.6483    | 3.0        | 1.22      | ZLV.WDB                                 | 20       | 237       |
| 536 | 2009-03-22 00:34:53 490 | 53 1193  | 6 6483    | 3.0        | 0.61      | <br>7LV WDB                             | 175      | 83        |
| 537 | 2009-03-27 02:51:28 160 | 53 3080  | 6.8100    | 3.0        | 0.96      | ESW WDB ZI V ENM                        | 35       | 95        |
| 520 | 2009-03-27 02:51:20:100 | 52 2447  | 6.6900    | 2.0        | 2.62      |                                         | 154      | 176       |
| 530 | 2009-04-14 21:03:25:880 | 53.3447  | 6.7800    | 3.0        | 2.02      |                                         | 02       | 70        |
| 559 | 2009-04-14 23:33:02:870 | 55.5565  | 6.7800    | 3.0        | 0.95      |                                         | 92       | 79        |
| 540 | 2009-04-16 17:12:15.910 | 53.3133  | 6.8450    | 3.0        | 2.59      | ZLV,VBG,ENV,HVVF,ENW,FSVV,VLVV          | 91       | 134       |
| 541 | 2009-04-20 14:42:51.490 | 53.2962  | 6.8083    | 3.0        | 1.47      | WDB,ZLV,ENM                             | 96       | 125       |
| 542 | 2009-05-01 14:13:01.730 | 53.2222  | 6.7200    | 3.0        | 1.20      | FSW,WDB,HWF,ENM,ZLV                     | 95       | 123       |
| 543 | 2009-05-04 11:31:16.560 | 53.3563  | 6.7817    | 3.0        | 1.81      | HWF,WDB,ENM,ZLV,FSW                     | 66       | 130       |
| 544 | 2009-05-07 01:20:23.540 | 53.3788  | 6.7783    | 3.0        | 1.37      | FSW,ZLV,ENM,HWF,WDB                     | 92       | 41        |
| 545 | 2009-05-07 03:42:12.640 | 53.3157  | 6.7283    | 3.0        | 1.59      | HWF,ZLV,ENM,WDB,FSW                     | 82       | 111       |
| 546 | 2009-05-07 13:14:42.560 | 53.2530  | 6.7233    | 3.0        | 1.25      | ENM,WDB,ZLV,FSW,HWF                     | 170      | 127       |
| 547 | 2009-05-08 05:23:11.950 | 53.3538  | 6.7617    | 3.0        | 3.00      | VBG,ENV,ENM,ZLV,WDB,HWF,FSW             | 113      | 153       |
| 548 | 2009-05-08 15:54:22.870 | 53.1417  | 6.7150    | 3.0        | 0.91      | HWF,WDB,ENM,ZLV,FSW                     | 110      | 99        |
| 549 | 2009-05-22 01:40:29.530 | 53.0760  | 6.8350    | 3.0        | 1.34      | HWF,ENV,FSW,VLW,ZLV,WDB                 | 145      | 115       |
| 550 | 2009-05-26 00:07:59.580 | 53.3017  | 6.9300    | 3.0        | 1.27      | WDB,ZLV,FSW                             | 100      | 31        |
| 551 | 2009-05-26 11:00:36.740 | 53.3138  | 6.9283    | 3.0        | 1.34      | ZLV,FSW,WDB                             | 79       | 103       |
| 552 | 2009-06-01 02:32:25.490 | 53.2302  | 6.8783    | 3.0        | 0.88      | ZLV.FSW.WDB                             | 62       | 68        |
| 553 | 2009-06-15 15:32:50.850 | 53,2865  | 6.8133    | 3.0        | 1.05      | ZLV.ESW.WDB                             | 46       | 92        |
| 554 | 2009-07-05 10:42:46 260 | 53 3075  | 6 7550    | 3.0        | 1 79      | WDB ENM VI W HWE ZI V ENV ESW           | 116      | 109       |
| 555 | 2009-07-05 18:52:42 270 | 53 2257  | 6.8350    | 3.0        | 1.75      | VI W ENV FSW HWE ENM ZI V WDB           | 166      | 104       |
| 556 | 2009-07-14 16:11:14 140 | 52 7725  | 4 3083    | 3.0        | 2.67      | WMH OTI                                 | 40       | 227       |
| 550 | 2000-07-22-00:00:00-110 | 52.7725  | 4.5005    | 3.0        | 1.67      |                                         | 40       | 120       |
| 557 | 2009-07-22 00.00.00.110 | 55.2905  | 6.7650    | 3.0        | 1.67      |                                         | 4        | 120       |
| 558 | 2009-08-19 01:49:38.130 | 53.2315  | 6.6317    | 3.0        | 0.67      | ENWI,WDB,FSW,ZLV                        | 54       | 78        |
| 559 | 2009-09-14 00:32:51.390 | 53.2778  | 6.8450    | 3.0        | 1.32      | ZLV,FSW,WDB,ENM                         | 56       | //        |
| 560 | 2009-09-29 02:23:10.190 | 53.3138  | 6.8017    | 3.0        | 1.55      | ENV,FSW,ENM,ZLV,HWF,WDB,VLW             | 19       | 114       |
| 561 | 2009-11-02 02:00:05.650 | 52.7898  | 6.8633    | 3.0        | 1.40      | VBG,HWF,ZLV,VLW,ENV,WDB                 | 43       | 91        |
| 562 | 2009-11-18 05:17:49.390 | 53.1453  | 6.7483    | 3.0        | 1.63      | WDB,VLW,ZLV,FSW,HWF,ENV                 | 127      | 131       |
| 563 | 2009-11-19 01:09:30.840 | 53.0708  | 6.8167    | 3.5        | 1.10      | HWF,ENV,VLW,ENM,WDB,ZLV,FSW             | 79       | 53        |
| 564 | 2009-11-19 13:20:09.420 | 52.9718  | 6.5883    | 3.0        | 0.85      | VLW,HWF,VBG,ENV                         | 141      | 169       |
| 565 | 2009-11-20 09:27:32.460 | 53.3208  | 6.7467    | 3.0        | 1.22      | ENM,FSW,ZLV,WDB                         | 125      | 132       |
| 566 | 2009-11-26 12:54:14.030 | 52.8917  | 6.1133    | 3.0        | 2.81      | WMH,FSW,ENM,HWF,OTL,ZLV,PPB,VBG,VLW,WDB | 105      | 169       |
| 567 | 2009-12-02 08:53:31.220 | 53.2912  | 6.8333    | 3.0        | 1.14      | WDB,ZLV,ENM,FSW                         | 132      | 140       |
| 568 | 2009-12-04 04:12:32.140 | 53.2842  | 6.7433    | 3.0        | 2.34      | FSW,WDB,VBG,HWF,ENM,VLW,ZLV             | 53       | 80        |
| 569 | 2009-12-07 00:24:59.870 | 53.4512  | 6.9233    | 3.0        | 1.32      | ENM,FSW,WDB                             | 94       | 37        |
| 570 | 2009-12-21 04:55:28.140 | 53.2237  | 6.7433    | 3.0        | 1.49      | WDB,FSW,ZLV,HWF,VLW                     | 69       | 63        |
| 571 | 2009-12-23 18:38:25.410 | 53.3095  | 6.7600    | 3.0        | 1.53      | WDB,ZLV,FSW,VLW,VBG,HWF                 | 79       | 129       |
| 572 | 2009-12-25 23:37:52.170 | 53.2272  | 6.7500    | 3.0        | 0.72      | WDB.HWF.FSW.ZLV                         | 120      | 130       |
| 573 | 2010-01-09 12:31:12 380 | 53 3670  | 6 6650    | 3.0        | 1.68      | HWE FSW VI W ZI V WDB                   | 115      | 142       |
| 574 | 2010-01-14 17:12:22 650 | 53 2927  | 6 8167    | 3.0        | 1 18      | WDB FSW 71 V                            | 98       | 114       |
| 575 | 2010-02-11 07:14:12 600 | 53 0837  | 6 7667    | 3.0        | 0.31      | WDB 71 V                                | 46       | 88        |
| 576 | 2010-02-11 07:14:12:000 | 52 1022  | 6 7017    | 2.0        | 1 16      |                                         | 120      | 179       |
| 577 | 2010-02-17 13:55:01:580 | 52 2077  | 6 9017    | 2.0        | 1.10      |                                         | 171      | 162       |
| 577 | 2010-02-19 23:12:51:500 | 53.2077  | 6 7017    | 3.0        | 1.00      |                                         | 05       | 102       |
| 576 | 2010-03-04 19:39:37:890 | 53.3422  | 6.7917    | 3.0        | 1.40      |                                         | 95       | 100       |
| 579 | 2010-03-31 15:15:02.770 | 53.1903  | 6.7767    | 3.0        | 2.37      | WDB,HWF,FSW,VLW,VBG                     | 124      | 146       |
| 580 | 2010-04-03 11:50:56.760 | 53.3457  | 6.6583    | 3.0        | 1.44      | WDB,FSW                                 | 10       | 122       |
| 581 | 2010-04-25 00:46:00.400 | 53.3178  | 6.8000    | 3.0        | 1.56      | HWF,WDB,FSW                             | //       | 56        |
| 582 | 2010-04-25 13:13:17.170 | 53.1575  | 6.8500    | 3.0        | 1.02      | WDB,FSW,VLW                             | 23       | 126       |
| 583 | 2010-05-03 09:26:16.070 | 53.3870  | 6.8100    | 3.0        | 2.31      | VLW,HWF,VBG                             | 132      | 125       |
| 584 | 2010-05-05 03:38:03.030 | 53.4045  | 6.7750    | 3.0        | 1.60      | VLW,HWF                                 | 31       | 99        |
| 585 | 2010-05-07 08:26:35.780 | 53.4907  | 6.6167    | 3.0        | 2.50      | HWF,VLW                                 | 92       | 93        |
| 586 | 2010-05-08 23:36:07.210 | 53.2782  | 6.8650    | 3.0        | 1.00      | HWF,VLW                                 | 107      | 150       |
| 587 | 2010-05-09 17:05:09.550 | 53.2472  | 6.9267    | 3.0        | 1.70      | HWF,VLW                                 | 72       | 114       |
| 588 | 2010-05-30 18:58:36.120 | 53.2383  | 6.6783    | 3.0        | 1.50      | HWF                                     | 101      | 28        |
| 589 | 2010-05-30 18:58:57.990 | 53.2383  | 6.6783    | 3.0        | 1.20      | HWF                                     | 122      | 7         |
| 590 | 2010-06-09 19:19:22.460 | 53.1818  | 6.7750    | 3.0        | 2.02      | HWF                                     | 68       | 61        |
| 591 | 2010-06-10 19:57:35.180 | 53.2257  | 6.6517    | 3.0        | 1.14      | HWF                                     | 57       | 72        |
| 592 | 2010-06-21 00:40:07.480 | 53.2495  | 6.7450    | 3.0        | 1.30      | HWF,VLW                                 | 108      | 24        |
| 593 | 2010-06-21 04:02:58.420 | 53.2180  | 6.6200    | 3.0        | 1.50      | HWEVLW                                  | 119      | 141       |
| 594 | 2010-06-21 08:06:03.700 | 53.0742  | 6.8350    | 3.0        | 1.70      | HWEVLW                                  | 97       | 113       |
| 595 | 2010-07-24 00:46:43.620 | 53,2803  | 6,7350    | 3.0        | 1.80      | HWF                                     | 119      | 138       |
| 596 | 2010-08-14 07:43:20 250 | 53 4028  | 6 7033    | 3.0        | 2 50      |                                         | 55       | 111       |
| 550 | 2010 00 14 07.45.20.250 | 55.4020  | 0.7055    | 5.0        | 2.50      | 1100F,VLVV                              | 55       |           |

# events



# **B.2** Borehole data availability at all stations and levels

FIGURE B.1: Overview of borehole triggered data (level 0). Grey rectangles represent the time span in which stations were operational. Crosses symbolise events for which waveform data are available (blue: events outside the Groningen field, black: within the field). The histogram on the right summarises the number of events recorded at each station.

-005



FIGURE B.2: Same as Fig. B.1 for level 1.









FIGURE B.4: Same as Fig. B.1 for level 3.

![](_page_91_Figure_2.jpeg)

FIGURE B.5: Same as Fig. B.1 for level 5.

# **B.3** Borehole station metadata

| TABLE B.2: | Same as | Table | 2.2 for | ENV. |
|------------|---------|-------|---------|------|
|------------|---------|-------|---------|------|

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth $[^{\circ}]$ | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|----------------------|---------|
| ENV1 | HHN     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 50        | 17            | 120     | 322                  | 0       |
|      | HHE     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 50        | 17            | 120     | 52                   | 0       |
|      | HHZ     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 50        | 17            | 120     | 0                    | -90     |
| ENV2 | HHN     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 100       | 17            | 120     | 337                  | 0       |
|      | HHE     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 100       | 17            | 120     | 67                   | 0       |
|      | HHZ     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 100       | 17            | 120     | 0                    | -90     |
| ENV3 | HHN     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 150       | 17            | 120     | 207                  | 0       |
|      | HHE     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 150       | 17            | 120     | 297                  | 0       |
|      | HHZ     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 150       | 17            | 120     | 0                    | -90     |
| ENV4 | HHN     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 200       | 17            | 120     | 311                  | 0       |
|      | HHE     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 200       | 17            | 120     | 41                   | 0       |
|      | HHZ     | 1995-06-20        | 2009-12-04   | 52.8944  | 6.6337    | 200       | 17            | 120     | 0                    | -90     |

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth [°] | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|-------------|---------|
| FSW1 | HHN     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 0         | 1             | 121.12  | 158         | 0       |
|      | HHE     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 0         | 1             | 121.12  | 248         | 0       |
|      | HHZ     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 0         | 1             | 121.12  | 0           | -90     |
| FSW2 | HHN     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 75        | 1             | 121.12  | 204         | 0       |
|      | HHE     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 75        | 1             | 121.12  | 294         | 0       |
|      | HHZ     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 75        | 1             | 121.12  | 0           | -90     |
| FSW3 | HHN     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 150       | 1             | 121.12  | 11          | 0       |
|      | HHE     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 150       | 1             | 121.12  | 101         | 0       |
|      | HHZ     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 150       | 1             | 121.12  | 0           | -90     |
| FSW4 | HHN     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 225       | 1             | 121.12  | 214         | 0       |
|      | HHE     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 225       | 1             | 121.12  | 304         | 0       |
|      | HHZ     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 225       | 1             | 121.12  | 0           | -90     |
| FSW5 | HHN     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 300       | 1             | 121.12  | 278         | 0       |
|      | HHE     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 300       | 1             | 121.12  | 8           | 0       |
|      | HHZ     | 1992-07-22        | 1996-05-05   | 53.2135  | 7.1195    | 300       | 1             | 121.12  | 0           | -90     |
| FSW1 | HHN     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 0         | 1             | 120.00  | 158         | 0       |
|      | HHE     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 0         | 1             | 120.00  | 248         | 0       |
|      | HHZ     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 0         | 1             | 120.00  | 0           | -90     |
| FSW2 | HHN     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 75        | 1             | 120.00  | 204         | 0       |
|      | HHE     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 75        | 1             | 120.00  | 294         | 0       |
|      | HHZ     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 75        | 1             | 120.00  | 0           | -90     |
| FSW3 | HHN     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 150       | 1             | 120.00  | 11          | 0       |
|      | HHE     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 150       | 1             | 120.00  | 101         | 0       |
|      | HHZ     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 150       | 1             | 120.00  | 0           | -90     |
| FSW4 | HHN     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 225       | 1             | 120.00  | 214         | 0       |
|      | HHE     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 225       | 1             | 120.00  | 304         | 0       |
|      | HHZ     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 225       | 1             | 120.00  | 0           | -90     |
| FSW5 | HHN     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 300       | 1             | 120.00  | 278         | 0       |
|      | HHE     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 300       | 1             | 120.00  | 8           | 0       |
|      | HHZ     | 1996-05-05        | 2010-04-29   | 53.2135  | 7.1195    | 300       | 1             | 120.00  | 0           | -90     |

#### TABLE B.3: Same as Table 2.2 for FSW.

# TABLE B.4: Same as Table 2.2 for HWF.

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth [°] | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|-------------|---------|
| HWF0 | HHN     | 1998-03-29        | 2010-11-24   | 53.071   | 6.3512    | 0         | 7             | 120     | 0           | 0       |
|      | HHE     | 1998-03-29        | 2010-11-24   | 53.071   | 6.3512    | 0         | 7             | 120     | 90          | 0       |
|      | HHZ     | 1998-03-29        | 2010-11-24   | 53.071   | 6.3512    | 0         | 7             | 120     | 0           | -90     |
| HWF1 | HHN     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 50        | 7             | 120     | 166         | 0       |
|      | HHE     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 50        | 7             | 120     | 256         | 0       |
|      | HHZ     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 50        | 7             | 120     | 0           | -90     |
| HWF2 | HHN     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 100       | 7             | 120     | 257         | 0       |
|      | HHE     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 100       | 7             | 120     | 347         | 0       |
|      | HHZ     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 100       | 7             | 120     | 0           | -90     |
| HWF3 | HHN     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 150       | 7             | 120     | 342         | 0       |
|      | HHE     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 150       | 7             | 120     | 72          | 0       |
|      | HHZ     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 150       | 7             | 120     | 0           | -90     |
| HWF4 | HHN     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 200       | 7             | 120     | 199         | 0       |
|      | HHE     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 200       | 7             | 120     | 289         | 0       |
|      | HHZ     | 1995-06-02        | 2010-11-24   | 53.071   | 6.3512    | 200       | 7             | 120     | 0           | -90     |

# TABLE B.5: Same as Table 2.2 for OTL.

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth $[^{\circ}]$ | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|----------------------|---------|
| OTL1 | HHN     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 50        | -4            | 120     | 89                   | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 50        | -4            | 120     | 179                  | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 50        | -4            | 120     | 0                    | -90     |
| OTL2 | HHN     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 100       | -4            | 120     | 191                  | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 100       | -4            | 120     | 281                  | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 100       | -4            | 120     | 0                    | -90     |
| OTL3 | HHN     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 150       | -4            | 120     | 325                  | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 150       | -4            | 120     | 55                   | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 150       | -4            | 120     | 0                    | -90     |
| OTL4 | HHN     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 200       | -4            | 120     | 115                  | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 200       | -4            | 120     | 205                  | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.6289  | 4.8227    | 200       | -4            | 120     | 0                    | -90     |

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth [°] | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|-------------|---------|
| PPB0 | HHN     | 1998-05-15        | 2010-10-16   | 52.6526  | 4.67      | 0         | 1             | 120     | 0           | 0       |
|      | HHE     | 1998-05-15        | 2010-10-16   | 52.6526  | 4.67      | 0         | 1             | 120     | 90          | 0       |
|      | HHZ     | 1998-05-15        | 2010-10-16   | 52.6526  | 4.67      | 0         | 1             | 120     | 0           | -90     |
| PPB1 | HHN     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 15        | 1             | 120     | 355         | 0       |
|      | HHE     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 15        | 1             | 120     | 85          | 0       |
|      | HHZ     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 15        | 1             | 120     | 0           | -90     |
| PPB2 | HHN     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 90        | 1             | 120     | 135         | 0       |
|      | HHE     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 90        | 1             | 120     | 225         | 0       |
|      | HHZ     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 90        | 1             | 120     | 0           | -90     |
| PPB3 | HHN     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 165       | 1             | 120     | 276         | 0       |
|      | HHE     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 165       | 1             | 120     | 6           | 0       |
|      | HHZ     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 165       | 1             | 120     | 0           | -90     |
| PPB4 | HHN     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 240       | 1             | 120     | 116         | 0       |
|      | HHE     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 240       | 1             | 120     | 206         | 0       |
|      | HHZ     | 1995-02-10        | 2010-10-16   | 52.6526  | 4.67      | 240       | 1             | 120     | 0           | -90     |

# TABLE B.6: Same as Table 2.2 for PPB.

# TABLE B.7: Same as Table 2.2 for VBG.

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth $[^{\circ}]$ | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|----------------------|---------|
| VBG1 | HHN     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 42        | 11            | 120     | 340                  | 0       |
|      | HHE     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 42        | 11            | 120     | 70                   | 0       |
|      | HHZ     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 42        | 11            | 120     | 0                    | -90     |
| VBG2 | HHN     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 92        | 11            | 120     | 294                  | 0       |
|      | HHE     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 92        | 11            | 120     | 24                   | 0       |
|      | HHZ     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 92        | 11            | 120     | 0                    | -90     |
| VBG3 | HHN     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 142       | 11            | 120     | 104                  | 0       |
|      | HHE     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 142       | 11            | 120     | 194                  | 0       |
|      | HHZ     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 142       | 11            | 120     | 0                    | -90     |
| VBG4 | HHN     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 192       | 11            | 120     | 90                   | 0       |
|      | HHE     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 192       | 11            | 120     | 180                  | 0       |
|      | HHZ     | 1995-04-28        | 2010-09-01   | 52.544   | 6.6693    | 192       | 11            | 120     | 0                    | -90     |

# TABLE B.8: Same as Table 2.2 for VLW.

| Name |     | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] |     | Dip [°] |
|------|-----|-------------------|--------------|----------|-----------|-----------|---------------|---------|-----|---------|
| VLW0 | HHN | 1998-07-24        | 2010-10-29   | 52.9682  | 7.0972    | 0         | 7             | 120     | 0   | 0       |
|      | HHE | 1998-07-24        | 2010-10-29   | 52.9682  | 7.0972    | 0         | 7             | 120     | 90  | 0       |
|      | HHZ | 1998-07-24        | 2010-10-29   | 52.9682  | 7.0972    | 0         | 7             | 120     | 0   | -90     |
| VLW1 | HHN | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 50        | 7             | 120     | 202 | 0       |
|      | HHE | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 50        | 7             | 120     | 292 | 0       |
|      | HHZ | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 50        | 7             | 120     | 0   | -90     |
| VLW2 | HHN | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 100       | 7             | 120     | 252 | 0       |
|      | HHE | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 100       | 7             | 120     | 342 | 0       |
|      | HHZ | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 100       | 7             | 120     | 0   | -90     |
| VLW3 | HHN | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 150       | 7             | 120     | 123 | 0       |
|      | HHE | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 150       | 7             | 120     | 213 | 0       |
|      | HHZ | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 150       | 7             | 120     | 0   | -90     |
| VLW4 | HHN | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 200       | 7             | 120     | 89  | 0       |
|      | HHE | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 200       | 7             | 120     | 179 | 0       |
|      | HHZ | 1995-05-23        | 2010-10-29   | 52.9682  | 7.0972    | 200       | 7             | 120     | 0   | -90     |

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth [°] | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|-------------|---------|
| WDB0 | HHN     | 1998-07-24        | 2010-04-29   | 53.2083  | 6.7355    | 0         | -2            | 120     | 0           | 0       |
|      | HHE     | 1998-07-24        | 2010-04-29   | 53.2083  | 6.7355    | 0         | -2            | 120     | 90          | 0       |
|      | HHZ     | 1998-07-24        | 2010-04-29   | 53.2083  | 6.7355    | 0         | -2            | 120     | 0           | -90     |
| WDB1 | HHN     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 47        | -2            | 120     | 94          | 0       |
|      | HHE     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 47        | -2            | 120     | 184         | 0       |
|      | HHZ     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 47        | -2            | 120     | 0           | -90     |
| WDB2 | HHN     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 97        | -2            | 120     | 232         | 0       |
|      | HHE     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 97        | -2            | 120     | 322         | 0       |
|      | HHZ     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 97        | -2            | 120     | 0           | -90     |
| WDB3 | HHN     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 147       | -2            | 120     | 131         | 0       |
|      | HHE     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 147       | -2            | 120     | 221         | 0       |
|      | HHZ     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 147       | -2            | 120     | 0           | -90     |
| WDB4 | HHN     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 197       | -2            | 120     | 250         | 0       |
|      | HHE     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 197       | -2            | 120     | 340         | 0       |
|      | HHZ     | 1995-04-12        | 2010-04-29   | 53.2083  | 6.7355    | 197       | -2            | 120     | 0           | -90     |

# TABLE B.9: Same as Table 2.2 for WDB.

### TABLE B.10: Same as Table 2.2 for WMH.

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth [°] | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|-------------|---------|
| WMH1 | HHN     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 50        | -1            | 120     | 260         | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 50        | -1            | 120     | 350         | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 50        | -1            | 120     | 0           | -90     |
| WMH2 | HHN     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 100       | -1            | 120     | 9           | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 100       | -1            | 120     | 99          | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 100       | -1            | 120     | 0           | -90     |
| WMH3 | HHN     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 150       | -1            | 120     | 280         | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 150       | -1            | 120     | 10          | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 150       | -1            | 120     | 0           | -90     |
| WMH4 | HHN     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 200       | -1            | 120     | 210         | 0       |
|      | HHE     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 200       | -1            | 120     | 300         | 0       |
|      | HHZ     | 1995-04-21        | 2010-10-11   | 52.7096  | 4.7498    | 200       | -1            | 120     | 0           | -90     |

# TABLE B.11: Same as Table 2.2 for ZL2.

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth [°] | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|-------------|---------|
| ZL21 | HHN     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 25        | 2             | 120     | 25          | 0       |
|      | HHE     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 25        | 2             | 120     | 115         | 0       |
|      | HHZ     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 25        | 2             | 120     | 0           | -90     |
| ZL22 | HHN     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 75        | 2             | 120     | 350         | 0       |
|      | HHE     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 75        | 2             | 120     | 80          | 0       |
|      | HHZ     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 75        | 2             | 120     | 0           | -90     |
| ZL23 | HHN     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 125       | 2             | 120     | 160         | 0       |
|      | HHE     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 125       | 2             | 120     | 250         | 0       |
|      | HHZ     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 125       | 2             | 120     | 0           | -90     |
| ZL24 | HHN     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 175       | 2             | 120     | 44          | 0       |
|      | HHE     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 175       | 2             | 120     | 134         | 0       |
|      | HHZ     | 1995-04-12        | 2009-04-10   | 53.0921  | 6.7533    | 175       | 2             | 120     | 0           | -90     |

# TABLE B.12: Same as Table 2.2 for ZLV.

| Name | Channel | Installation date | Removal date | Latitude | Longitude | Depth [m] | Elevation [m] | Fs [Hz] | Azimuth $[^{\circ}]$ | Dip [°] |
|------|---------|-------------------|--------------|----------|-----------|-----------|---------------|---------|----------------------|---------|
| ZLV0 | HHN     | 1996-02-15        | 2010-05-18   | 53.0921  | 6.7533    | 0         | 2             | 120     | 0                    | 0       |
|      | HHE     | 1996-02-15        | 2010-05-18   | 53.0921  | 6.7533    | 0         | 2             | 120     | 90                   | 0       |
|      | HHZ     | 1996-02-15        | 2010-05-18   | 53.0921  | 6.7533    | 0         | 2             | 120     | 0                    | -90     |
| ZLV1 | HHN     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 50        | 2             | 120     | 64                   | 0       |
|      | HHE     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 50        | 2             | 120     | 154                  | 0       |
|      | HHZ     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 50        | 2             | 120     | 0                    | -90     |
| ZLV2 | HHN     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 100       | 2             | 120     | 133                  | 0       |
|      | HHE     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 100       | 2             | 120     | 223                  | 0       |
|      | HHZ     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 100       | 2             | 120     | 0                    | -90     |
| ZLV3 | HHN     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 150       | 2             | 120     | 222                  | 0       |
|      | HHE     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 150       | 2             | 120     | 312                  | 0       |
|      | HHZ     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 150       | 2             | 120     | 0                    | -90     |
| ZLV4 | HHN     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 200       | 2             | 120     | 130                  | 0       |
|      | HHE     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 200       | 2             | 120     | 220                  | 0       |
|      | HHZ     | 1995-04-12        | 2010-05-18   | 53.0921  | 6.7533    | 200       | 2             | 120     | 0                    | -90     |

# **B.4** Borehole orientation

#### **B.4.1** Vertical component

![](_page_95_Figure_4.jpeg)

FIGURE B.6: Vertical component waveforms recorded on each level of every borehole station for the 1998  $M_w$  7.1 Fiji earthquake and filtered between 0.05 and 0.8 Hz. Blue vertical bars represent the theoretical arrival times of the PKP-phases using the iasp91 1D velocity model (Kennett and Engdahl, 1991). Traces have been sorted by decreasing distance to the source from top to bottom.

![](_page_96_Picture_0.jpeg)

![](_page_96_Figure_2.jpeg)

1999-04-08 13:10:34 - Mw=7.1

FIGURE B.7: Same as Fig. B.6 for the 1999  $\mathrm{M}_w$  7.1 China earthquake.

#### **B.4.2 Horizontal components**

#### Results

TABLE B.13: Individual borehole sensor orientation results. ID is the event ID (see Tab. B.1).  $_{\rm L}$  is the event magnitude. d is the event-station distance.  $\theta$  is the orientation angle resulting from the semi-automated approach.  $\theta_{diff}$  is the difference to the angle stored in the station XML file and is coloured when it exceeds 25° (the darker the larger the difference). The offset angle is measured between max(R·Z) and min(|T|). Larger offsets (>30°) are coloured (the darker, the larger the difference). The next-two-last column indicates the particle motion linearity. SNR is the signal-to-noise ratio computed on the vertical component around the P-wave onset. Linearity and SNR columns are coloured depending on their values (the darker, the smaller). Stations marked with an asterisk are surface sensors that have not been oriented previously. Rows marked by a cross correspond to examples shown in Figs. B.18-B.29.

| Station | ID  | Origin time             | L          | d [km] | θ[°] | $\theta_{diff}$ [°] | Offset [ $^{\circ}$ ] | Linearity | SNR           |
|---------|-----|-------------------------|------------|--------|------|---------------------|-----------------------|-----------|---------------|
| ENM1    | 107 | 1998-02-15 07:24:16.420 | 2.6        | 20.2   | 146  | -24                 | 70                    | 5.0       | 224.1         |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6        | 18.8   | 320  | 161                 | 46                    | 5.3       | 47.2          |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0        | 24.1   | 139  | -17                 | 44                    | 3.1       | 187.4         |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0        | 16.6   | 142  | -20                 | 7                     | 6.9       | 369.2         |
| х       | 280 | 2003-11-16 20:04:11.480 | 2.7        | 16.2   | 137  | -14                 | 53                    | 6.8       | 407.2         |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5        | 16.3   | 135  | -13                 | 81                    | 9.4       | 141.4         |
| ENM2    | 107 | 1998-02-15 07:24:16.420 | 2.6        | 20.2   | 186  | -9                  | 17                    | 3.0       | 284.5         |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6        | 18.8   | 190  | -13                 | 13                    | 3.9       | 72.7          |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0        | 24.1   | 187  | -10                 | 39                    | 4.1       | 210.3         |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0        | 16.6   | 175  | 1                   | 3                     | 5.8       | 597.9         |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7        | 16.2   | 181  | -3                  | 12                    | 5.9       | 456.7         |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5        | 16.3   | 179  | -2                  | 21                    | 4.1       | 149.3         |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6        | 14.9   | 162  | 15                  | 5                     | 25.0      | 396.3         |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0        | 19.5   | 173  | 4                   | 12                    | 6.3       | 356.8         |
| ENM3    | 107 | 1998-02-15 07:24:16.420 | 2.6        | 20.2   | 265  | -101                | 19                    | 2.7       | 313.9         |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6        | 18.8   | 189  | -25                 | 2                     | 2.1       | 98.5          |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0        | 16.6   | 161  | 2                   | 37                    | 4.6       | 478.9         |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7        | 16.2   | 303  | -138                | 65                    | 1.5       | 742.9         |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8        | 51.8   | 110  | 54                  | 35                    | 3.0       | 53.5          |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5        | 16.3   | 262  | -98                 | 24                    | 1.8       | 214.2         |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6        | 24.8   | 105  | 59                  | 23                    | 7.1       | 71.2          |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6        | 14.9   | 153  | 11                  | 8                     | 9.8       | 481.5         |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6        | 26.3   | 311  | -147                | 68                    | 1.9       | 141.5         |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0        | 19.5   | 181  | -16                 | 5                     | 1.9       | 406.5         |
| ENM4    | 107 | 1998-02-15 07:24:16.420 | 2.6        | 20.2   | 125  | -34                 | 15                    | 1.9       | 623.6         |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0        | 24.1   | 104  | -13                 | 0                     | 4.3       | 476.2         |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0        | 16.6   | 90   | 0                   | 4                     | 4.7       | 753.0         |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7        | 16.2   | 91   | 0                   | 1                     | 2.4       | 644.3         |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8        | 51.8   | 68   | 23                  | 6                     | 3.5       | 77.1          |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5        | 16.3   | 104  | -13                 | 1                     | 1.5       | 236.6         |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6        | 24.8   | 36   | 55                  | 1                     | 14.7      | 82.0          |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6        | 14.9   | /6   | 15                  | 5                     | 8.6       | 595.4         |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6        | 26.3   | 109  | -18                 | 17                    | 1.3       | 214.7         |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0        | 19.5   | 83   | 8                   | 2                     | 6.1       | 600.6         |
| ENV1    | 58  | 1996-12-28 18:16:56.580 | 2.7        | 28.4   | 307  | 15                  | 5                     | 11.1      | 79.1          |
|         | 66  | 1997-02-19 21:53:50.810 | 3.4        | 28.1   | 327  | -5                  | 80                    | 5.1       | 114.0         |
|         | 103 | 1998-01-28 21:33:03.840 | 2.7        | 28.3   | 301  | 20                  | 12                    | 3.2       | 62.7          |
|         | 115 | 1998-07-14 12:12:02.230 | 3.3        | 29.1   | 303  | 19                  | 64                    | 5.1       | 85.3          |
|         | 175 | 2000-10-25 18:10:34.790 | 3.2        | 29.0   | 312  | 9                   | 56                    | 14.0      | 263.4         |
|         | 2/8 | 2003-11-10 00:22:38.030 | 3.0        | 48.2   | 334  | -11                 | 1                     | 4.0       | 67.3          |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5        | 14.5   | 323  | 0                   | 46                    | 2.6       | 75.8          |
| ENIV/2  | 350 | 2006-01-10 23:41:06.140 | 2.0        | 8.0    | 318  | 4                   | 4                     | 10.4      | 309.9         |
| EINVZ   | 58  | 1996-12-28 18:16:56.580 | 2.7        | 28.4   | 317  | 20                  | 20                    | 6.9       | 94.7          |
|         | 103 | 1998-01-28 21:33:03.840 | 2.7        | 28.3   | 38   | -61                 | 39                    | 4.5       | 89.8<br>126 F |
|         | 115 | 1990-07-14 12:12:02.230 | 3.3        | 29.1   | 310  |                     | 32                    | 2.0       | 120.5         |
|         | 175 | 2000 10 25 19:10:23 700 | ∠.ŏ        | 28.7   | 327  | 9                   | 3                     | 5.9       | 02.9          |
|         | 275 | 2000-10-25 18:10:34.790 | ⊃.∠<br>2.0 | 29.0   | 255  | 10                  | 30                    | 15.0      | 508.4<br>65.4 |
| Y       | 2/5 | 2005-10-24 01.32.41.160 | 5.U<br>2 E | 45.9   | 220  | -18                 | 55                    | 4.1       | 127.0         |
| X       | 250 | 2005-10-12 10:00:42.530 | 2.5        | 14.5   | 320  |                     | 4                     | 4.9       | 520.1         |
|         | 330 | 2000-01-10 23:41:06.140 | 2.0        | 8.U    | 224  |                     | 2                     | 2.1       | 3∠0.1<br>20.2 |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6        | 37.4   | 334  | 2                   | 8                     | 42.6      | 29.2          |

| Station | ID         | Origin time             | L   | <i>d</i> [km] | θ[°] | $\theta_{diff}$ [°] | Offset [ <sup>°</sup> ] | Linearity  | SNR           |
|---------|------------|-------------------------|-----|---------------|------|---------------------|-------------------------|------------|---------------|
|         | 547        | 2009-05-08 05:23:11.950 | 3.0 | 51.9          | 166  | 171                 | 23                      | 5.4        | 27.7          |
| ENV3    | 25         | 1996-03-12 12:13:48.170 | 2.6 | 29.4          | 209  | -1                  | 0                       | 2.1        | 27.4          |
|         | 58         | 1996-12-28 18:16:56.580 | 2.7 | 28.4          | 204  | 3                   | 5                       | 2.5        | 68.3          |
|         | 66         | 1997-02-19 21:53:50.810 | 3.4 | 28.1          | 215  | -8                  | 6                       | 3.8        | 358.5         |
|         | 103        | 1998-01-28 21:33:03.840 | 2.7 | 28.3          | 212  | -5                  | 7                       | 5.4        | 104.8         |
|         | 107        | 1998-02-15 07:24:16.420 | 2.0 | 52.2<br>29.1  | 206  | 0                   | 3                       | 2.4        | 38.5          |
|         | 154        | 1998-07-14 12.12.02.230 | 2.8 | 29.1          | 203  | 0                   | 13                      | 2.0        | 116.4         |
|         | 175        | 2000-10-25 18:10:34.790 | 3.2 | 29.0          | 206  | 0                   | 1                       | 5.7        | 585.6         |
|         | 278        | 2003-11-10 00:22:38.030 | 3.0 | 48.2          | 204  | 3                   | 17                      | 16.5       | 114.4         |
|         | 346        | 2005-10-12 16:06:42.530 | 2.5 | 14.5          | 204  | 3                   | 0                       | 1.8        | 237.4         |
|         | 350        | 2006-01-10 23:41:06.140 | 2.6 | 8.0           | 206  | 1                   | 1                       | 17.9       | 270.7         |
|         | 547        | 2009-05-08 05:23:11.950 | 3.0 | 51.9          | 213  | -5                  | 29                      | 22.6       | 34.6          |
| ENV4    | 25         | 1996-03-12 12:13:48.170 | 2.6 | 29.4          | 303  | 8                   | 0                       | 2.2        | 30.1          |
|         | 58         | 1996-12-28 18:16:56.580 | 2.7 | 28.4          | 292  | 19                  | 8                       | 2.2        | 145.4         |
|         | 66         | 1997-02-19 21:53:50.810 | 3.4 | 28.1          | 306  | 4                   | 4                       | 5.7        | 397.5         |
|         | 103        | 1998-01-28 21:33:03.840 | 2.7 | 28.3          | 298  | 12                  | g<br>c                  | 4.1        | 132.7         |
|         | 107        | 1998-02-13 07.24.16.420 | 2.0 | 29.1          | 296  | 12                  | 0                       | 6.5        | 259.2         |
|         | 154        | 1999-12-31 11:00:55 330 | 2.8 | 28.7          | 302  | 8                   | 1                       | 6.0        | 146.8         |
|         | 175        | 2000-10-25 18:10:34.790 | 3.2 | 29.0          | 311  | 0                   | 7                       | 11.1       | 725.5         |
|         | 275        | 2003-10-24 01:52:41.160 | 3.0 | 45.9          | 310  | 0                   | 6                       | 5.2        | 81.8          |
|         | 346        | 2005-10-12 16:06:42.530 | 2.5 | 14.5          | 292  | 19                  | 27                      | 2.0        | 220.6         |
|         | 390        | 2006-08-08 05:04:00.050 | 3.5 | 51.0          | 306  | 5                   | 8                       | 7.5        | 195.4         |
| FSW1    | 107        | 1998-02-15 07:24:16.420 | 2.6 | 28.0          | 91   | 67                  | 2                       | 13.8       | 93.7          |
| х       | 278        | 2003-11-10 00:22:38.030 | 3.0 | 31.3          | 240  | -82                 | 16                      | 15.5       | 172.9         |
|         | 280        | 2003-11-16 20:04:11.480 | 2.7 | 31.4          | 253  | -95                 | 23                      | 3.9        | 154.0         |
|         | 350        | 2006-01-10 23:41:06.140 | 2.6 | 46.6          | 292  | -134                | 19                      | 3.1        | 41.6          |
|         | 391        | 2006-08-08 09:49:23.380 | 2.5 | 31.5          | 288  | -130                | 7                       | 2.4        | 45.8          |
|         | 411        | 2007-02-17 01:41:14.010 | 2.0 | 27.9          | 340  | 172                 | 0                       | 1.3        | 49.0          |
|         | 470<br>538 | 2008-10-50 05.54.29.080 | 2.6 | 32.8          | 167  | -174                | 28                      | 96         | 63.9          |
|         | 540        | 2009-04-16 17:12:15.910 | 2.6 | 21.4          | 330  | -172                | 9                       | 3.4        | 313.3         |
|         | 547        | 2009-05-08 05:23:11.950 | 3.0 | 28.6          | 332  | -174                | 6                       | 3.9        | 70.6          |
|         | 566        | 2009-11-26 12:54:14.030 | 2.8 | 76.5          | 291  | -133                | 8                       | 1.7        | 34.8          |
| FSW2    | 58         | 1996-12-28 18:16:56.580 | 2.7 | 42.6          | 210  | -5                  | 17                      | 9.8        | 58.5          |
|         | 66         | 1997-02-19 21:53:50.810 | 3.4 | 42.8          | 183  | 20                  | 1                       | 1.7        | 77.7          |
|         | 103        | 1998-01-28 21:33:03.840 | 2.7 | 42.7          | 194  | 10                  | 1                       | 5.1        | 41.2          |
|         | 107        | 1998-02-15 07:24:16.420 | 2.6 | 28.0          | 202  | 1                   | 0                       | 75.9       | 181.1         |
|         | 115        | 1998-07-14 12:12:02.230 | 3.3 | 42.7          | 198  | 6                   | 29                      | 5.0        | 67.2          |
|         | 166        | 2000-06-12 15:48:23.010 | 2.6 | 28.9          | 109  | -1/9                | 15                      | 3.3        | 157.1         |
|         | 275        | 2003-09-27 13.37.34.130 | 2.7 | 31.3          | 202  | 1                   | 1                       | 1.2        | 218.5         |
|         | 280        | 2003-11-16 20:04:11.480 | 2.7 | 31.4          | 202  | 0                   | 6                       | 1.2        | 165.8         |
|         | 297        | 2004-06-21 23:32:02.760 | 2.8 | 47.6          | 231  | -26                 | 31                      | 1.1        | 185.5         |
|         | 391        | 2006-08-08 09:49:23.380 | 2.5 | 31.5          | 208  | -3                  | 2                       | 1.5        | 40.9          |
|         | 411        | 2007-02-17 01:41:14.010 | 2.6 | 27.9          | 28   | 175                 | 39                      | 34.7       | 80.4          |
|         | 478        | 2008-10-30 05:54:29.080 | 3.2 | 30.0          | 202  | 1                   | 22                      | 10.5       | 124.5         |
|         | 538        | 2009-04-14 21:05:25.880 | 2.6 | 32.8          | 31   | 172                 | 37                      | 2.0        | 57.1          |
|         | 540        | 2009-04-16 17:12:15.910 | 2.6 | 21.4          | 202  | 1                   | 1                       | 14.8       | 197.7         |
|         | 547        | 2009-05-08 05:23:11.950 | 3.0 | 28.6          | 203  | 0                   | 26                      | 3.1        | 89.3          |
| FC14/2  | 566        | 2009-11-26 12:54:14.030 | 2.8 | /6.5          | 204  | 0                   | 5                       | 6.3        | 31.6          |
| F3W3    | 25<br>66   | 1997-02-12 12:13:48.170 | 2.0 | 42.1          | 10   | -16<br>_8           | 10                      | 8./<br>7 1 | 46.5          |
|         | 103        | 1998-01-28 21:33:03.840 | 2.7 | 42.7          | 16   | -4                  | 0                       | 3.3        | 55.0          |
|         | 107        | 1998-02-15 07:24:16.420 | 2.6 | 28.0          | 9    | 1                   | 1                       | 184.7      | 181.6         |
|         | 115        | 1998-07-14 12:12:02.230 | 3.3 | 42.7          | 23   | -11                 | 0                       | 9.8        | 70.8          |
|         | 166        | 2000-06-12 15:48:23.010 | 2.6 | 28.9          | 9    | 1                   | 3                       | 12.3       | 262.1         |
|         | 190        | 2001-09-09 06:58:12.520 | 3.5 | 173.6         | 40   | -28                 | 3                       | 5.2        | 35.9          |
|         | 191        | 2001-09-10 04:30:15.430 | 3.2 | 173.7         | 26   | -14                 | 8                       | 2.9        | 45.8          |
|         | 273        | 2003-09-27 13:57:54.150 | 2.7 | 32.0          | 2    | 9                   | 5                       | 11.6       | 49.6          |
|         | 278        | 2003-11-10 00:22:38.030 | 3.0 | 31.3          | 19   | -8                  | 0                       | 2.0        | 308.1         |
|         | 280        | 2003-11-10 20:04:11.480 | 2.7 | 31.4<br>47.6  | 18   | -10                 | 4                       | 2.0        | 152.5         |
|         | 350        | 2006-01-10 23:41:06 140 | 2.6 | 46.6          | 22   | -10                 | n                       | 10.0       | 28.2          |
|         | 391        | 2006-08-08 09:49:23.380 | 2.5 | 31.5          | 14   | -2                  | 11                      | 3.0        | 44.2          |
|         | 411        | 2007-02-17 01:41:14.010 | 2.6 | 27.9          | 19   | -8                  | 4                       | 4.3        | 61.4          |
|         | 478        | 2008-10-30 05:54:29.080 | 3.2 | 30.0          | 6    | 4                   | 0                       | 23.7       | 89.2          |
|         | 538        | 2009-04-14 21:05:25.880 | 2.6 | 32.8          | 12   | -1                  | 11                      | 1.8        | 51.3          |
|         | 540        | 2009-04-16 17:12:15.910 | 2.6 | 21.4          | 15   | -4                  | 12                      | 6.1        | 162.8         |
|         | 547        | 2009-05-08 05:23:11.950 | 3.0 | 28.6          | 14   | -3                  | 11                      | 2.4        | 71.5          |
|         | 566        | 2009-11-26 12:54:14.030 | 2.8 | 76.5          | 23   | -11                 | 1                       | 2.0        | 32.2          |
| FSW4    | 25         | 1996-03-12 12:13:48.170 | 2.6 | 42.1          | 223  | -9                  | 21                      | 3.6        | 38.6          |
|         | 66<br>102  | 1997-02-19 21:53:50.810 | 3.4 | 42.8          | 214  | 0                   | 3                       | 26.6       | 31.8          |
|         | 103        | 1998-02-15 07·24·16 420 | 2.7 | 42.7<br>28.0  | 205  | 2                   | 1                       | 47         | 59.4<br>191.4 |
|         | 115        | 1998-07-14 12:12:02.230 | 3.3 | 42.7          | 216  | -1                  | 3                       | 34.8       | 98.5          |
|         | 1          |                         |     |               |      | 1                   | -                       |            |               |

| Station | ID  | Origin time             | i   | <i>d</i> [km] | θ[°] | $\theta_{diff}$ [°] | Offset [ <sup>0</sup> ] | Linearity | SNR   |
|---------|-----|-------------------------|-----|---------------|------|---------------------|-------------------------|-----------|-------|
|         | 166 | 2000-06-12 15:48:23.010 | 2.6 | 28.9          | 211  | 2                   | 3                       | 2.2       | 283.4 |
|         | 175 | 2000-10-25 18:10:34.790 | 3.2 | 42.8          | 213  | 0                   | 1                       | 40.5      | 143.9 |
|         | 190 | 2001-09-09 06:58:12.520 | 3.5 | 173.6         | 172  | 42                  | 0                       | 7.2       | 40.1  |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 32.0          | 209  | 5                   | 2                       | 1.2       | 97.0  |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0 | 31.3          | 206  | 7                   | 0                       | 1.7       | 327.7 |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7 | 31.4          | 200  | 13                  | 0                       | 16.8      | 186.9 |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 47.6          | 208  | 6                   | 16                      | 11.4      | 147.2 |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5 | 31.5          | 201  | 13                  | 1                       | 5.9       | 66.8  |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 27.9          | 186  | 27                  | 2                       | 2.8       | 49.8  |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 30.0          | 208  | 5                   | 0                       | 3.3       | 121.4 |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6 | 21.4          | 210  | 3                   | 0                       | 1.3       | 227.4 |
|         | 566 | 2009-11-26 12:54:14.030 | 2.8 | 76.5          | 204  | 10                  | 0                       | 3.6       | 30.7  |
| FSW5    | 66  | 1997-02-19 21:53:50.810 | 3.4 | 42.8          | 291  | -13                 | 0                       | 4.6       | 28.1  |
|         | 103 | 1998-01-28 21:33:03.840 | 2.7 | 42.7          | 281  | -2                  | 0                       | 2.9       | 48.6  |
|         | 107 | 1998-02-15 07:24:16.420 | 2.6 | 28.0          | 281  | -3                  | 8                       | 10.5      | 161.5 |
|         | 115 | 1998-07-14 12:12:02.230 | 3.3 | 42.7          | 286  | -7                  | 1                       | 9.7       | 124.5 |
|         | 154 | 1999-12-31 11:00:55.330 | 2.8 | 42.4          | 324  | -46                 | 7                       | 13.1      | 85.7  |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6 | 28.9          | 282  | -4                  | 4                       | 12.4      | 259.3 |
|         | 175 | 2000-10-25 18:10:34.790 | 3.2 | 42.8          | 281  | -3                  | 1                       | 14.0      | 154.6 |
|         | 190 | 2001-09-09 06:58:12.520 | 3.5 | 173.6         | 290  | -11                 | 2                       | 34.4      | 32.5  |
|         | 191 | 2001-09-10 04:30:15.430 | 3.2 | 173.7         | 300  | -21                 | 1                       | 10.5      | 37.0  |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 32.0          | 279  | 0                   | 3                       | 11.3      | 121.6 |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0 | 31.3          | 288  | -10                 | 5                       | 2.1       | 424.4 |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7 | 31.4          | 286  | -8                  | 2                       | 3.2       | 206.6 |
| x       | 297 | 2004-06-21 23:32:02.760 | 2.8 | 47.6          | 288  | -9                  | 0                       | 113.6     | 156.9 |
|         | 350 | 2006-01-10 23:41:06.140 | 2.6 | 46.6          | 285  | -6                  | 0                       | 63.0      | 25.5  |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5 | 31.5          | 284  | -5                  | 3                       | 6.3       | 68.5  |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 27.9          | 292  | -14                 | 3                       | 12.9      | 74.4  |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 30.0          | 278  | 0                   | 5                       | 14.8      | 131.9 |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 32.8          | 284  | -6                  | 12                      | 3.6       | 89.2  |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6 | 21.4          | 283  | -5                  | 0                       | 83.4      | 296.2 |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0 | 28.6          | 285  | -7                  | 1                       | 24.2      | 121.5 |
|         | 566 | 2009-11-26 12:54:14.030 | 2.8 | 76.5          | 283  | -4                  | 1                       | 10.1      | 43.0  |
| HWF0*   | 346 | 2005-10-12 16:06:42.530 | 2.5 | 13.8          | 172  | -172                | 8                       | 4.3       | 352.7 |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 29.3          | 151  | -150                | 0                       | 2.6       | 70.0  |
| HWF1    | 175 | 2000-10-25 18:10:34.790 | 3.2 | 54.1          | 156  | 10                  | 32                      | 14.1      | 57.3  |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0 | 36.3          | 171  | -4                  | 0                       | 29.1      | 200.7 |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7 | 38.4          | 168  | -1                  | 46                      | 23.3      | 83.8  |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 20.3          | 152  | 13                  | 8                       | 9.6       | 222.8 |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5 | 13.8          | 146  | 19                  | 29                      | 3.1       | 92.1  |
|         | 390 | 2006-08-08 05:04:00.050 | 3.5 | 38.8          | 166  | 0                   | 22                      | 30.3      | 322.3 |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 29.3          | 171  | -4                  | 2                       | 34.3      | 86.9  |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 38.5          | 166  | 0                   | 5                       | 23.1      | 198.1 |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 37.6          | 173  | -6                  | 28                      | 16.1      | 84.3  |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0 | 41.8          | 170  | -4                  | 6                       | 13.6      | 25.8  |
| HWF2    | 175 | 2000-10-25 18:10:34.790 | 3.2 | 54.1          | 252  | 5                   | 5                       | 5.3       | 57.6  |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 38.5          | 274  | -16                 | 13                      | 5.5       | 31.3  |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0 | 36.3          | 266  | -8                  | 5                       | 48.6      | 222.0 |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7 | 38.4          | 271  | -13                 | 10                      | 5.6       | 70.1  |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 20.3          | 247  | 9                   | 3                       | 30.0      | 235.2 |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5 | 13.8          | 243  | 13                  | 8                       | 2.8       | 128.5 |
|         | 350 | 2006-01-10 23:41:06.140 | 2.6 | 19.6          | 238  | 19                  | 10                      | 5.3       | 140.6 |
|         | 390 | 2006-08-08 05:04:00.050 | 3.5 | 38.8          | 271  | -13                 | 4                       | 9.4       | 307.4 |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 29.3          | 267  | -9                  | 1                       | 56.0      | 90.3  |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 38.5          | 266  | -8                  | 4                       | 30.4      | 193.1 |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 37.6          | 275  | -17                 | 16                      | 14.6      | 65.2  |
| HWF3    | 107 | 1998-02-15 07:24:16.420 | 2.6 | 42.5          | 356  | -13                 | 6                       | 13.1      | 31.6  |
|         | 175 | 2000-10-25 18:10:34.790 | 3.2 | 54.1          | 328  | 14                  | 0                       | 7.8       | 79.2  |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 38.5          | 354  | -11                 | 3                       | 9.2       | 29.2  |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0 | 38.6          | 346  | -3                  | 0                       | 82.1      | 108.1 |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0 | 36.3          | 345  | -2                  | 5                       | 46.7      | 234.6 |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7 | 38.4          | 351  | -8                  | 6                       | 21.9      | 68.5  |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 20.3          | 320  | 21                  | 4                       | 1.9       | 359.9 |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5 | 13.8          | 322  | 19                  | 7                       | 6.0       | 156.9 |
|         | 350 | 2006-01-10 23:41:06.140 | 2.6 | 19.6          | 329  | 13                  | 67                      | 4.3       | 168.6 |
|         | 390 | 2006-08-08 05:04:00.050 | 3.5 | 38.8          | 350  | -7                  | 0                       | 30.1      | 256.1 |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 29.3          | 349  | -6                  | 1                       | 20.0      | 139.3 |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 38.5          | 346  | -3                  | 3                       | 46.6      | 179.2 |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 37.6          | 349  | -6                  | 12                      | 15.2      | 102.0 |
| HWF4    | 107 | 1998-02-15 07:24:16.420 | 2.6 | 42.5          | 221  | -21                 | 0                       | 2.3       | 40.4  |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6 | 39.7          | 195  | 3                   | 3                       | 6.0       | 31.7  |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 38.5          | 205  | -5                  | 6                       | 7.4       | 37.6  |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0 | 38.6          | 197  | 2                   | 0                       | 69.9      | 140.2 |
|         | 278 | 2003-11-10 00:22:38.030 | 3.0 | 36.3          | 207  | -7                  | 2                       | 16.4      | 227.2 |
| х       | 280 | 2003-11-16 20:04:11.480 | 2.7 | 38.4          | 202  | -2                  | 7                       | 5.0       | 102.2 |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 20.3          | 182  | 16                  | 0                       | 59.8      | 341.4 |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5 | 13.8          | 183  | 15                  | 1                       | 44.8      | 151.5 |

| Station  | ID         | Origin time             | L   | <i>d</i> [km] | θ[ <sup>0</sup> ] | $\theta_{diff}$ [°] | Offset [ <sup>°</sup> ] | Linearity    | SNR           |
|----------|------------|-------------------------|-----|---------------|-------------------|---------------------|-------------------------|--------------|---------------|
|          | 350        | 2006-01-10 23:41:06.140 | 2.6 | 19.6          | 183               | 16                  | 9                       | 14.3         | 191.5         |
|          | 390        | 2006-08-08 05:04:00.050 | 3.5 | 38.8          | 209               | -9                  | 3                       | 6.3          | 289.2         |
|          | 411        | 2007-02-17 01:41:14.010 | 2.6 | 29.3          | 201               | -1                  |                         | 31.6         | 122.4         |
|          | 4/8        | 2008-10-30 05:54:29.080 | 3.2 | 38.5          | 204               | -4                  | 4                       | 5.8          | 231.5         |
|          | 530<br>547 | 2009-04-14 21.03.23.880 | 2.0 | 41.8          | 208               | -0                  | 2                       | 11.4         | 92.5<br>46.7  |
| OTI 1    | 192        | 2001-10-10 06:41:09 360 | 2.7 | 13.2          | 80                | 8                   | 5                       | 77           | 112.2         |
| OTL2     | 192        | 2001-10-10 06:41:09.360 | 2.7 | 13.2          | 199               | -8                  | 0                       | 2.6          | 104.1         |
| •        | 474        | 2008-10-11 08:19:39.900 | 2.6 | 31.5          | 184               | 6                   | 8                       | 9.4          | 30.1          |
| OTL3     | 192        | 2001-10-10 06:41:09.360 | 2.7 | 13.2          | 344               | -19                 | 1                       | 42.3         | 98.7          |
| OTL4     | 192        | 2001-10-10 06:41:09.360 | 2.7 | 13.2          | 107               | 7                   | 7                       | 2.9          | 216.5         |
|          | 474        | 2008-10-11 08:19:39.900 | 2.6 | 31.5          | 103               | 11                  | 0                       | 1.3          | 37.7          |
| VBG1     | 66         | 1997-02-19 21:53:50.810 | 3.4 | 40.7          | 329               | 10                  | 89                      | 15.5         | 43.6          |
|          | 175        | 2000-10-25 18:10:34.790 | 3.2 | 41.2          | 312               | 27                  | 14                      | 2.0          | 51.9          |
|          | 297        | 2004-06-21 23:32:02.760 | 2.8 | 45.1          | 169               | 170                 | 8                       | 7.1          | 31.0          |
| VBG2     | 58         | 1996-12-28 18:16:56.580 | 2.7 | 41.1          | 287               | 6                   | 38                      | 4.2          | 38.1          |
|          | 66         | 1997-02-19 21:53:50.810 | 3.4 | 40.7          | 286               | 7                   | 5                       | 14.7         | 71.6          |
|          | 175        | 2000-10-25 18:10:34.790 | 3.2 | 41.2          | 281               | 12                  | 7                       | 11.6         | 83.9          |
| VDCD     | 297        | 2004-06-21 23:32:02.760 | 2.8 | 45.1          | 2/9               | 14                  | 39                      | 12.8         | 56.8          |
| VBG3     | 58         | 1996-12-28 18:16:56.580 | 2.7 | 41.1          | 07                | -1                  |                         | 39.5<br>54.3 | 44.0<br>56.9  |
| ^        | 103        | 1997-02-19 21.33.30.810 | 27  | 40.7          | 96                | 7                   | 41                      | 9.7          | 28.1          |
|          | 107        | 1998-02-15 07:24:16.420 | 2.6 | 90.7          | 90                | 13                  | 16                      | 1.7          | 26.3          |
|          | 115        | 1998-07-14 12:12:02.230 | 3.3 | 41.3          | 100               | 3                   | 7                       | 15.7         | 27.4          |
|          | 175        | 2000-10-25 18:10:34.790 | 3.2 | 41.2          | 99                | 4                   | 0                       | 39.3         | 80.7          |
|          | 278        | 2003-11-10 00:22:38.030 | 3.0 | 87.0          | 88                | 16                  | 2                       | 1.9          | 44.8          |
|          | 297        | 2004-06-21 23:32:02.760 | 2.8 | 45.1          | 276               | -172                | 27                      | 20.6         | 56.9          |
|          | 390        | 2006-08-08 05:04:00.050 | 3.5 | 89.8          | 98                | 5                   | 23                      | 5.7          | 83.2          |
| VBG4     | 154        | 1999-12-31 11:00:55.330 | 2.8 | 41.4          | 89                | 0                   | 0                       | 87.5         | 38.5          |
|          | 166        | 2000-06-12 15:48:23.010 | 2.6 | 88.8          | 59                | 30                  | 3                       | 18.1         | 31.0          |
|          | 278        | 2003-11-10 00:22:38.030 | 3.0 | 87.0          | 73                | 17                  | 8                       | 18.7         | 74.7          |
| VLW0*    | 154        | 1999-12-31 11:00:55.330 | 2.8 | 15.2          | 292               | 68                  | 3                       | 2.0          | 2144.6        |
| 1/1 14/4 | 297        | 2004-06-21 23:32:02.760 | 2.8 | 35.7          | 350               | 9                   | 40                      | 1.1          | 154.8         |
| VLW1     | 25         | 1995-06-20 08:59:40.120 | 2.7 | 14.0          | 247               | 3                   | 282                     | 1.2          | 64.0<br>108.4 |
|          | 58         | 1996-12-28 18:16:56 580 | 2.0 | 14.0          | 25                | 177                 | 8                       | 1.5          | 317.6         |
|          | 103        | 1998-01-28 21:33:03.840 | 2.7 | 15.4          | 176               | 26                  | 14                      | 5.9          | 370.0         |
|          | 154        | 1999-12-31 11:00:55.330 | 2.8 | 15.2          | 191               | 11                  | 3                       | 2.3          | 418.8         |
|          | 278        | 2003-11-10 00:22:38.030 | 3.0 | 48.2          | 49                | 152                 | 6                       | 3.1          | 29.8          |
|          | 297        | 2004-06-21 23:32:02.760 | 2.8 | 35.7          | 174               | 27                  | 5                       | 1.3          | 136.4         |
| VLW2     | 9          | 1995-06-20 08:59:40.120 | 2.7 | 15.8          | 251               | 1                   | 8                       | 7.4          | 85.6          |
|          | 25         | 1996-03-12 12:13:48.170 | 2.6 | 14.8          | 252               | 0                   | 9                       | 21.2         | 168.3         |
|          | 58         | 1996-12-28 18:16:56.580 | 2.7 | 15.4          | 250               | 2                   | 2                       | 107.0        | 446.3         |
|          | 103        | 1998-01-28 21:33:03.840 | 2.7 | 15.6          | 262               | -9                  | 1                       | 16.8         | 585.0         |
|          | 154        | 1999-12-31 11:00:55.330 | 2.8 | 15.2          | 259               | -6                  | 2                       | 28.6         | /5/.3         |
|          | 2/0        | 2003-11-10 00.22.36.030 | 20  | 40.2          | 224               | 27                  | 2                       | 14.9         | 160.2         |
| VI W3    | 237        | 1995-06-20 08:59:40 120 | 2.0 | 15.8          | 118               | 5                   | 3                       | 3.5          | 109.5         |
| 12113    | 25         | 1996-03-12 12:13:48.170 | 2.6 | 14.8          | 123               | 0                   | 0                       | 64.0         | 167.4         |
|          | 58         | 1996-12-28 18:16:56.580 | 2.7 | 15.4          | 122               | 1                   | 1                       | 47.3         | 458.3         |
|          | 103        | 1998-01-28 21:33:03.840 | 2.7 | 15.6          | 125               | -1                  | 1                       | 35.3         | 512.5         |
|          | 154        | 1999-12-31 11:00:55.330 | 2.8 | 15.2          | 127               | -3                  | 0                       | 83.3         | 795.2         |
| VLW4     | 9          | 1995-06-20 08:59:40.120 | 2.7 | 15.8          | 79                | 10                  | 1                       | 14.2         | 124.1         |
|          | 25         | 1996-03-12 12:13:48.170 | 2.6 | 14.8          | 83                | 6                   | 1                       | 26.4         | 212.3         |
|          | 58         | 1996-12-28 18:16:56.580 | 2.7 | 15.4          | 82                | 7                   | 0                       | 72.4         | 546.9         |
|          | 103        | 1998-01-28 21:33:03.840 | 2.7 | 15.6          | 80                | 9                   | 0                       | 25.7         | 442.1         |
|          | 279        | 2003-11.10 00:22:28 020 | 2.8 | 15.2          | 84                | 10                  | 10                      | 34.5         | 749.5         |
| x        | 278        | 2003-11-10 00.22:38.030 | 2.0 | 46.Z          | 70                | 10                  | 2                       | 2.8          | 191.1         |
| ^        | 350        | 2006-01-10 23:41:06.140 | 2.6 | 35.4          | 63                | 26                  | 3                       | 9.2          | 34.4          |
|          | 390        | 2006-08-08 05:04:00.050 | 3.5 | 50.3          | 78                | 11                  | 2                       | 6.6          | 114.0         |
| WDB0*    | 273        | 2003-09-27 13:57:54.150 | 2.7 | 15.8          | 111               | -110                | 19                      | 4.8          | 271.8         |
|          | 280        | 2003-11-16 20:04:11.480 | 2.7 | 15.2          | 181               | 178                 | 12                      | 2.1          | 368.8         |
|          | 391        | 2006-08-08 09:49:23.380 | 2.5 | 15.8          | 342               | 17                  | 13                      | 1.4          | 147.4         |
|          | 538        | 2009-04-14 21:05:25.880 | 2.6 | 15.6          | 185               | 174                 | 1                       | 3.0          | 317.9         |
|          | 547        | 2009-05-08 05:23:11.950 | 3.0 | 16.3          | 197               | 162                 | 1                       | 3.2          | 200.7         |
| WDB1     | 58         | 1996-12-28 18:16:56.580 | 2.7 | 46.5          | 316               | 138                 | 27                      | 1.6          | 27.6          |
|          | 166        | 2000-06-12 15:48:23.010 | 2.6 | 14.7          | 89                | 5                   | 14                      | 1.1          | 119.0         |
|          | 273        | 2003-09-27 13:57:54.150 | 2.7 | 15.8          | 85                | 9                   | 27                      | 1.5          | 139.7         |
|          | 280        | 2003-11-10 20:04:11.480 | 2./ | 15.2          | 127               | 8<br>27             | 15                      | 1.7          | 253.5         |
|          | 297        | 2004-00-21 23.32.02.700 | 2.0 | 15.8          | 70                | -52                 | ۱۱<br>۲                 | 4.7          | 65.6          |
|          | 538        | 2009-04-14 21:05:25.880 | 2.6 | 15.6          | 87                | 6                   | 19                      | 3.2          | 284.7         |
|          | 547        | 2009-05-08 05:23:11.950 | 3.0 | 16.3          | 89                | 4                   | 12                      | 1.9          | 252.9         |
| WDB2     | 66         | 1997-02-19 21:53:50.810 | 3.4 | 46.6          | 245               | -13                 | 11                      | 2.1          | 50.0          |
|          | 107        | 1998-02-15 07:24:16.420 | 2.6 | 16.6          | 210               | 22                  | 6                       | 10.7         | 227.6         |
|          | 166        | 2000-06-12 15:48:23.010 | 2.6 | 14.7          | 209               | 23                  | 0                       | 7.1          | 152.9         |

| Station | ID                                                                                                                                      | Origin time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d [km]                                                                                                                                                                               | θ [°]                                                                                                                                                               | Adies [°]                                                                                                                                                                                                                 | Offset [ <sup>0</sup> ]                                                                                                                       | Linearity                                                                                                                                                        | SNR                                                                                                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station | 175                                                                                                                                     | 2000-10-25 18:10:34 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47.0                                                                                                                                                                                 | 252                                                                                                                                                                 | -20                                                                                                                                                                                                                       | 5                                                                                                                                             | 2.6                                                                                                                                                              | 52.6                                                                                                                                                                             |
|         | 273                                                                                                                                     | 2003-09-27 13:57:54 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.8                                                                                                                                                                                 | 208                                                                                                                                                                 | 24                                                                                                                                                                                                                        | 25                                                                                                                                            | 4.2                                                                                                                                                              | 176.3                                                                                                                                                                            |
|         | 280                                                                                                                                     | 2003-11-16 20:04:11 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.0                                                                                                                                                                                 | 195                                                                                                                                                                 | 36                                                                                                                                                                                                                        | 17                                                                                                                                            | 2.9                                                                                                                                                              | 395.9                                                                                                                                                                            |
|         | 200                                                                                                                                     | 2003-11-10 20:04:11:400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 5                                                                                                                                                                                 | 257                                                                                                                                                                 | 24                                                                                                                                                                                                                        | 1/                                                                                                                                            | 10.7                                                                                                                                                             | 167.6                                                                                                                                                                            |
|         | 257                                                                                                                                     | 2004-00-21 23.32.02.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.2                                                                                                                                                                                 | 257                                                                                                                                                                 | -24                                                                                                                                                                                                                       |                                                                                                                                               | 10.7                                                                                                                                                             | 107.0                                                                                                                                                                            |
|         | 350                                                                                                                                     | 2006-01-10 23:41:06.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.2                                                                                                                                                                                 | 260                                                                                                                                                                 | -28                                                                                                                                                                                                                       | 5                                                                                                                                             | 2.7                                                                                                                                                              | 122.3                                                                                                                                                                            |
|         | 391                                                                                                                                     | 2006-08-08 09:49:23.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.8                                                                                                                                                                                 | 188                                                                                                                                                                 | 43                                                                                                                                                                                                                        | 1                                                                                                                                             | 1.7                                                                                                                                                              | 220.4                                                                                                                                                                            |
|         | 538                                                                                                                                     | 2009-04-14 21:05:25.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.6                                                                                                                                                                                 | 194                                                                                                                                                                 | 3/                                                                                                                                                                                                                        | 22                                                                                                                                            | 3.3                                                                                                                                                              | 338.4                                                                                                                                                                            |
|         | 547                                                                                                                                     | 2009-05-08 05:23:11.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.3                                                                                                                                                                                 | 208                                                                                                                                                                 | 23                                                                                                                                                                                                                        | 1                                                                                                                                             | 15.3                                                                                                                                                             | 292.8                                                                                                                                                                            |
| WDB3    | 58                                                                                                                                      | 1996-12-28 18:16:56.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.5                                                                                                                                                                                 | 212                                                                                                                                                                 | -80                                                                                                                                                                                                                       | 24                                                                                                                                            | 1.9                                                                                                                                                              | 35.3                                                                                                                                                                             |
|         | 66                                                                                                                                      | 1997-02-19 21:53:50.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.6                                                                                                                                                                                 | 173                                                                                                                                                                 | -42                                                                                                                                                                                                                       | 10                                                                                                                                            | 3.8                                                                                                                                                              | 76.1                                                                                                                                                                             |
| WDB4    | 66                                                                                                                                      | 1997-02-19 21:53:50.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.6                                                                                                                                                                                 | 258                                                                                                                                                                 | -8                                                                                                                                                                                                                        | 21                                                                                                                                            | 2.1                                                                                                                                                              | 86.1                                                                                                                                                                             |
|         | 107                                                                                                                                     | 1998-02-15 07:24:16.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.6                                                                                                                                                                                 | 228                                                                                                                                                                 | 22                                                                                                                                                                                                                        | 1                                                                                                                                             | 27.8                                                                                                                                                             | 246.8                                                                                                                                                                            |
|         | 115                                                                                                                                     | 1998-07-14 12:12:02.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.0                                                                                                                                                                                 | 279                                                                                                                                                                 | -29                                                                                                                                                                                                                       | 5                                                                                                                                             | 32.7                                                                                                                                                             | 33.4                                                                                                                                                                             |
|         | 154                                                                                                                                     | 1999-12-31 11:00:55.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.6                                                                                                                                                                                 | 268                                                                                                                                                                 | -18                                                                                                                                                                                                                       | 1                                                                                                                                             | 6.3                                                                                                                                                              | 27.3                                                                                                                                                                             |
|         | 166                                                                                                                                     | 2000-06-12 15:48:23.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.7                                                                                                                                                                                 | 226                                                                                                                                                                 | 24                                                                                                                                                                                                                        | 3                                                                                                                                             | 25.0                                                                                                                                                             | 248.0                                                                                                                                                                            |
|         | 175                                                                                                                                     | 2000-10-25 18:10:34.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47.0                                                                                                                                                                                 | 274                                                                                                                                                                 | -24                                                                                                                                                                                                                       | 2                                                                                                                                             | 17.6                                                                                                                                                             | 59.2                                                                                                                                                                             |
| х       | 273                                                                                                                                     | 2003-09-27 13:57:54.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.8                                                                                                                                                                                 | 220                                                                                                                                                                 | 30                                                                                                                                                                                                                        | 0                                                                                                                                             | 83.0                                                                                                                                                             | 207.5                                                                                                                                                                            |
|         | 280                                                                                                                                     | 2003-11-16 20:04:11.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2                                                                                                                                                                                 | 221                                                                                                                                                                 | 28                                                                                                                                                                                                                        | 4                                                                                                                                             | 63.5                                                                                                                                                             | 340.5                                                                                                                                                                            |
|         | 391                                                                                                                                     | 2006-08-08 09:49:23.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.8                                                                                                                                                                                 | 225                                                                                                                                                                 | 24                                                                                                                                                                                                                        | 1                                                                                                                                             | 28.4                                                                                                                                                             | 111.8                                                                                                                                                                            |
|         | 538                                                                                                                                     | 2009-04-14 21:05:25.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.6                                                                                                                                                                                 | 216                                                                                                                                                                 | 33                                                                                                                                                                                                                        | 2                                                                                                                                             | 36.9                                                                                                                                                             | 391.1                                                                                                                                                                            |
|         | 547                                                                                                                                     | 2009-05-08 05:23:11 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.3                                                                                                                                                                                 | 232                                                                                                                                                                 | 17                                                                                                                                                                                                                        | 1                                                                                                                                             | 39.9                                                                                                                                                             | 320.5                                                                                                                                                                            |
| WMUD    | 174                                                                                                                                     | 2008-10.11 09:10:20 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.5                                                                                                                                                                                 | 250                                                                                                                                                                 | 10                                                                                                                                                                                                                        | 0                                                                                                                                             | 2.6                                                                                                                                                              | 22.0                                                                                                                                                                             |
|         | 474                                                                                                                                     | 2000-10-11 00.19:39.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.0                                                                                                                                                                                 | 200                                                                                                                                                                 | 10                                                                                                                                                                                                                        | ¥<br>۲                                                                                                                                        | 5.0                                                                                                                                                              | 20.0                                                                                                                                                                             |
| WWH3    | 4/4                                                                                                                                     | 2008-10-11 08:19:39.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.6                                                                                                                                                                                 | 282                                                                                                                                                                 | -2                                                                                                                                                                                                                        | 3                                                                                                                                             | 5.2                                                                                                                                                              | 28.9                                                                                                                                                                             |
| WMH4    | 474                                                                                                                                     | 2008-10-11 08:19:39.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.6                                                                                                                                                                                 | 221                                                                                                                                                                 | -11                                                                                                                                                                                                                       | 23                                                                                                                                            | 12.0                                                                                                                                                             | 40.5                                                                                                                                                                             |
| ZL21    | 103                                                                                                                                     | 1998-01-28 21:33:03.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.8                                                                                                                                                                                 | 179                                                                                                                                                                 | -154                                                                                                                                                                                                                      | 87                                                                                                                                            | 3.9                                                                                                                                                              | 78.6                                                                                                                                                                             |
|         | 166                                                                                                                                     | 2000-06-12 15:48:23.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.6                                                                                                                                                                                 | 12                                                                                                                                                                  | 12                                                                                                                                                                                                                        | 1                                                                                                                                             | 3.8                                                                                                                                                              | 49.0                                                                                                                                                                             |
| ZL22    | 103                                                                                                                                     | 1998-01-28 21:33:03.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.8                                                                                                                                                                                 | 1                                                                                                                                                                   | -11                                                                                                                                                                                                                       | 8                                                                                                                                             | 5.2                                                                                                                                                              | 110.0                                                                                                                                                                            |
|         | 107                                                                                                                                     | 1998-02-15 07:24:16.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.4                                                                                                                                                                                 | 350                                                                                                                                                                 | 0                                                                                                                                                                                                                         | 11                                                                                                                                            | 5.3                                                                                                                                                              | 54.5                                                                                                                                                                             |
|         | 166                                                                                                                                     | 2000-06-12 15:48:23.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.6                                                                                                                                                                                 | 353                                                                                                                                                                 | -3                                                                                                                                                                                                                        | 14                                                                                                                                            | 2.8                                                                                                                                                              | 62.3                                                                                                                                                                             |
|         | 175                                                                                                                                     | 2000-10-25 18:10:34.790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.3                                                                                                                                                                                 | 1                                                                                                                                                                   | -11                                                                                                                                                                                                                       | 12                                                                                                                                            | 8.5                                                                                                                                                              | 179.0                                                                                                                                                                            |
| ZL23    | 25                                                                                                                                      | 1996-03-12 12:13:48.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.0                                                                                                                                                                                 | 158                                                                                                                                                                 | 1                                                                                                                                                                                                                         | 17                                                                                                                                            | 1.3                                                                                                                                                              | 30.2                                                                                                                                                                             |
|         | 58                                                                                                                                      | 1996-12-28 18:16:56.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.7                                                                                                                                                                                 | 172                                                                                                                                                                 | -11                                                                                                                                                                                                                       | 3                                                                                                                                             | 4.7                                                                                                                                                              | 111.3                                                                                                                                                                            |
|         | 103                                                                                                                                     | 1998-01-28 21:33:03.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.8                                                                                                                                                                                 | 174                                                                                                                                                                 | -14                                                                                                                                                                                                                       | 11                                                                                                                                            | 2.9                                                                                                                                                              | 89.2                                                                                                                                                                             |
| x       | 107                                                                                                                                     | 1998-02-15 07:24:16 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.4                                                                                                                                                                                 | 157                                                                                                                                                                 | 3                                                                                                                                                                                                                         | 2                                                                                                                                             | 58.8                                                                                                                                                             | 67.8                                                                                                                                                                             |
| ~       | 166                                                                                                                                     | 2000-06-12 15:48:23 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.4                                                                                                                                                                                 | 163                                                                                                                                                                 | -3                                                                                                                                                                                                                        | 14                                                                                                                                            | 33                                                                                                                                                               | 83.1                                                                                                                                                                             |
|         | 175                                                                                                                                     | 2000-00-12 13:40:23.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.0                                                                                                                                                                                 | 170                                                                                                                                                                 | -10                                                                                                                                                                                                                       | 14                                                                                                                                            | 10.5                                                                                                                                                             | 172 /                                                                                                                                                                            |
| 71.24   | E0                                                                                                                                      | 1006 12 29 19:16:56 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.7                                                                                                                                                                                 | F.C                                                                                                                                                                 | -10                                                                                                                                                                                                                       | 15                                                                                                                                            | 10.5                                                                                                                                                             | 90.2                                                                                                                                                                             |
| 2L24    | 107                                                                                                                                     | 1990-12-20 10.10.30.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.4                                                                                                                                                                                 | 20                                                                                                                                                                  | -11                                                                                                                                                                                                                       | 9                                                                                                                                             | 1.2                                                                                                                                                              | 102.7                                                                                                                                                                            |
|         | 107                                                                                                                                     | 1998-02-15 07.24.16.420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.4                                                                                                                                                                                 | 50                                                                                                                                                                  | 14                                                                                                                                                                                                                        | 4                                                                                                                                             | 15.9                                                                                                                                                             | 102.7                                                                                                                                                                            |
| ZLV0*   | 115                                                                                                                                     | 1998-07-14 12:12:02.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.3                                                                                                                                                                                 | 174                                                                                                                                                                 | -174                                                                                                                                                                                                                      | 15                                                                                                                                            | 3.2                                                                                                                                                              | 69.7                                                                                                                                                                             |
|         | 166                                                                                                                                     | 2000-06-12 15:48:23.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.6                                                                                                                                                                                 | 193                                                                                                                                                                 | 166                                                                                                                                                                                                                       | 17                                                                                                                                            | 4.4                                                                                                                                                              | 56.5                                                                                                                                                                             |
|         | 273                                                                                                                                     | 2003-09-27 13:57:54.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.7                                                                                                                                                                                 | 186                                                                                                                                                                 | 173                                                                                                                                                                                                                       | 13                                                                                                                                            | 2.3                                                                                                                                                              | 25.2                                                                                                                                                                             |
|         | 280                                                                                                                                     | 2003-11-16 20:04:11.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.2                                                                                                                                                                                 | 192                                                                                                                                                                 | 168                                                                                                                                                                                                                       | 21                                                                                                                                            | 7.3                                                                                                                                                              | 150.9                                                                                                                                                                            |
|         | 297                                                                                                                                     | 2004-06-21 23:32:02.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20.7                                                                                                                                                                                 | 253                                                                                                                                                                 | 107                                                                                                                                                                                                                       | 2                                                                                                                                             | 4.6                                                                                                                                                              | 475.4                                                                                                                                                                            |
|         | 390                                                                                                                                     | 2006-08-08 05:04:00.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.0                                                                                                                                                                                 | 173                                                                                                                                                                 | -173                                                                                                                                                                                                                      | 0                                                                                                                                             | 17.7                                                                                                                                                             | 301.9                                                                                                                                                                            |
|         | 411                                                                                                                                     | 2007-02-17 01:41:14.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.4                                                                                                                                                                                 | 167                                                                                                                                                                 | -167                                                                                                                                                                                                                      | 3                                                                                                                                             | 1.6                                                                                                                                                              | 410.6                                                                                                                                                                            |
|         | 478                                                                                                                                     | 2008-10-30 05:54:29.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.3                                                                                                                                                                                 | 175                                                                                                                                                                 | -175                                                                                                                                                                                                                      | 0                                                                                                                                             | 1.6                                                                                                                                                              | 211.5                                                                                                                                                                            |
|         | 538                                                                                                                                     | 2009-04-14 21:05:25.880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.6                                                                                                                                                                                 | 172                                                                                                                                                                 | -172                                                                                                                                                                                                                      | 1                                                                                                                                             | 9.0                                                                                                                                                              | 62.1                                                                                                                                                                             |
|         | 547                                                                                                                                     | 2009-05-08 05:23:11.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.2                                                                                                                                                                                 | 181                                                                                                                                                                 | 178                                                                                                                                                                                                                       | 0                                                                                                                                             | 2.0                                                                                                                                                              | 67.3                                                                                                                                                                             |
| ZLV1    | 58                                                                                                                                      | 1996-12-28 18:16:56.580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.7                                                                                                                                                                                 | 278                                                                                                                                                                 | 146                                                                                                                                                                                                                       | 58                                                                                                                                            | 5.9                                                                                                                                                              | 103.3                                                                                                                                                                            |
|         | 66                                                                                                                                      | 1997-02-19 21:53:50.810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.7                                                                                                                                                                                 | 96                                                                                                                                                                  | -31                                                                                                                                                                                                                       | 56                                                                                                                                            | 10.7                                                                                                                                                             | 160.5                                                                                                                                                                            |
|         | 115                                                                                                                                     | 1998-07-14 12:12:02.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.3                                                                                                                                                                                 | 90                                                                                                                                                                  | -26                                                                                                                                                                                                                       | 81                                                                                                                                            | 10.5                                                                                                                                                             | 87.0                                                                                                                                                                             |
|         | 154                                                                                                                                     | 1999-12-31 11:00:55.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.8                                                                                                                                                                                 | 87                                                                                                                                                                  | -23                                                                                                                                                                                                                       | 16                                                                                                                                            | 11.3                                                                                                                                                             | 41.1                                                                                                                                                                             |
|         | 166                                                                                                                                     | 2000-06-12 15:48:23.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.6                                                                                                                                                                                 | 250                                                                                                                                                                 | 173                                                                                                                                                                                                                       | 71                                                                                                                                            | 5.1                                                                                                                                                              | 60.3                                                                                                                                                                             |
|         | 273                                                                                                                                     | 2003-09-27 13:57:54.150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.7                                                                                                                                                                                 | 69                                                                                                                                                                  | -5                                                                                                                                                                                                                        | 80                                                                                                                                            | 5.3                                                                                                                                                              | 31.7                                                                                                                                                                             |
|         | 275                                                                                                                                     | 2003-10-24 01:52:41.160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.7                                                                                                                                                                                 | 70                                                                                                                                                                  |                                                                                                                                                                                                                           | 45                                                                                                                                            | 11.0                                                                                                                                                             | 303.9                                                                                                                                                                            |
|         | 280                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      | 70                                                                                                                                                                  | -6                                                                                                                                                                                                                        | 45                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                                                  |
|         |                                                                                                                                         | 2003-11-16 20:04:11.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.2                                                                                                                                                                                 | 70                                                                                                                                                                  | -ь<br>-6                                                                                                                                                                                                                  | 45                                                                                                                                            | 17.1                                                                                                                                                             | 67.6                                                                                                                                                                             |
|         | 297                                                                                                                                     | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.7<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.2<br>20.7                                                                                                                                                                         | 70<br>71<br>74                                                                                                                                                      | -6<br>-6<br>-9                                                                                                                                                                                                            | 45<br>7<br>27                                                                                                                                 | 17.1<br>27.4                                                                                                                                                     | 67.6<br>314.4                                                                                                                                                                    |
|         | 297<br>411                                                                                                                              | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7<br>2.8<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.2<br>20.7<br>15.4                                                                                                                                                                 | 70<br>71<br>74<br>72                                                                                                                                                | -6<br>-6<br>-9<br>-8                                                                                                                                                                                                      | 45<br>7<br>27<br>14                                                                                                                           | 17.1<br>27.4<br>2.7                                                                                                                                              | 67.6<br>314.4<br>208.6                                                                                                                                                           |
|         | 297<br>411<br>478                                                                                                                       | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29 080                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.7<br>2.8<br>2.6<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.2<br>20.7<br>15.4<br>27 3                                                                                                                                                         | 70<br>71<br>74<br>72<br>75                                                                                                                                          | -6<br>-6<br>-9<br>-8<br>-11                                                                                                                                                                                               | 45<br>7<br>27<br>14<br>16                                                                                                                     | 17.1<br>27.4<br>2.7<br>3.5                                                                                                                                       | 67.6<br>314.4<br>208.6<br>173.4                                                                                                                                                  |
|         | 297<br>411<br>478<br>538                                                                                                                | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25 880                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7<br>2.8<br>2.6<br>3.2<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.2<br>20.7<br>15.4<br>27.3<br>28.6                                                                                                                                                 | 71<br>74<br>72<br>75<br>249                                                                                                                                         | -6<br>-6<br>-9<br>-8<br>-11                                                                                                                                                                                               | 45<br>7<br>27<br>14<br>16<br>70                                                                                                               | 17.1<br>27.4<br>2.7<br>3.5<br>8 9                                                                                                                                | 67.6<br>314.4<br>208.6<br>173.4<br>75.1                                                                                                                                          |
|         | 297<br>411<br>478<br>538<br>547                                                                                                         | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11 950                                                                                                                                                                                                                                                                                                                                                                                           | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2                                                                                                                                         | 70<br>71<br>74<br>72<br>75<br>249<br>72                                                                                                                             | -ь<br>-6<br>-9<br>-8<br>-11<br>174<br>-8                                                                                                                                                                                  | 45<br>7<br>27<br>14<br>16<br>70<br>30                                                                                                         | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7                                                                                                                         | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9                                                                                                                                  |
|         | 297<br>411<br>478<br>538<br>547<br>566                                                                                                  | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14 020                                                                                                                                                                                                                                                                                                                                                                | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5                                                                                                                                 | 71<br>74<br>72<br>75<br>249<br>72<br>72                                                                                                                             | -6<br>-6<br>-9<br>-8<br>-11<br>174<br>-8<br>-8                                                                                                                                                                            | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48                                                                                                   | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9                                                                                                                  | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3                                                                                                                          |
| 71.1/2  | 297<br>411<br>478<br>538<br>547<br>566                                                                                                  | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030                                                                                                                                                                                                                                                                                                                                                                | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5                                                                                                                                 | 71<br>74<br>72<br>75<br>249<br>72<br>72<br>245                                                                                                                      | 6<br>6<br>9<br>11<br>174<br>8<br>8<br>8                                                                                                                                                                                   | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48                                                                                                   | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9                                                                                                                  | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3                                                                                                                          |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107                                                                                     | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580                                                                                                                                                                                                                                                                                                                                     | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7                                                                                                                         | 71<br>74<br>72<br>75<br>249<br>72<br>72<br>345                                                                                                                      | 6<br>6<br>9<br>8<br>11<br>174<br>8<br>8<br>8<br>148<br>2                                                                                                                                                                  | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7                                                                                              | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3                                                                                                           | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2                                                                                                         |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107                                                                                     | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420                                                                                                                                                                                                                                                                                                          | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4                                                                                                                 | 71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130                                                                                                               | 6<br>9<br>8<br>11<br>174<br>8<br>8<br>8<br>8<br>8<br>                                                                                                                                                                     | 43<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1                                                                                         | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6                                                                                                   | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2                                                                                                         |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115                                                                              | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230                                                                                                                                                                                                                                                                               | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3                                                                                                         | 71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334                                                                                                        | -6<br>-6<br>-9<br>-8<br>-11<br>174<br>-8<br>-8<br>-8<br>148<br>3<br>158                                                                                                                                                   | 43<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3                                                                                    | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.4                                                                                     | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4                                                                                                |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154                                                                       | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330                                                                                                                                                                                                                                                    | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8                                                                                                 | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158                                                                                           | 6<br>6<br>9<br>-8<br>-11<br>174<br>8<br>8<br>8<br>8<br>8<br>25<br>25<br>25                                                                                                                                                | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57                                                                              | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9                                                                                     | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7                                                                                        |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166                                                                | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010                                                                                                                                                                                                                         | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6                                                                                         | 71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151                                                                                          | -6<br>-6<br>-9<br>-8<br>-11<br>174<br>-8<br>-8<br>-8<br>148<br>3<br>158<br>-25<br>-18                                                                                                                                     | 43<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>1<br>3                                                                    | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5                                                                              | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6                                                                               |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175                                                         | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790                                                                                                                                                                                              | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3                                                                                 | 71<br>74<br>72<br>75<br>249<br>72<br>345<br>130<br>334<br>158<br>151<br>331                                                                                         | 6<br>6<br>9<br>8<br>11<br>174<br>8<br>8<br>8<br>8<br>25<br>18<br>25<br>18<br>25<br>18                                                                                                                                     | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>78                                                                  | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8                                                                       | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1                                                                      |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273                                                  | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150                                                                                                                                                                   | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7                                                                         | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158                                                                      | -6<br>-6<br>-9<br>-8<br>-11<br>174<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-18<br>148<br>3<br>58<br>-25<br>-18<br>161<br>-25                                                                                   | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>57<br>13<br>78<br>7                                                 | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5                                                                | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0                                                              |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275                                           | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160                                                                                                                                        | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7<br>3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7                                                                 | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>147                                                               | 6<br>6<br>-9<br>-8<br>-11<br>174<br>8<br>8<br>8<br>8<br>8<br>8<br>14<br>25<br>14                                                                                                                                          | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>3<br>57<br>13<br>7<br>8<br>7<br>24                                  | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>6.3                                                  | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5                                                     |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275<br>280                                    | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-06-12 15:48:23.010<br>2000-00-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160<br>2003-11-16 20:04:11.480                                                                                  | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7<br>3.0<br>2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7<br>28.2                                                         | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>147<br>165                                                        | 6<br>6<br>9<br>8<br>11<br>174<br>8<br>8<br>8<br>8<br>8<br>25<br>18<br>161<br>25<br>14<br>31                                                                                                                               | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>78<br>7<br>7<br>24<br>5                                             | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>2.8<br>3.5<br>6.3<br>3.0                                    | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5<br>228.1                                            |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275<br>280<br>297                             | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160<br>2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760                                                       | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7<br>3.0<br>2.7<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7<br>28.2<br>20.7                                                 | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>147<br>165<br>38                                                  | 6<br>6<br>9<br>8<br>11<br>74<br>8<br>8<br>8<br>8<br>8<br>25<br>18<br>25<br>14<br>21<br>25<br>14<br>31<br>25                                                                                                               | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>78<br>7<br>7<br>24<br>5<br>5<br>5<br>5<br>5                         | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>6.3<br>3.0<br>1.3                                           | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5<br>228.1<br>475.2                                   |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275<br>280<br>297<br>346                      | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160<br>2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2005-10-12 16:06:42.530                                                       | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7<br>3.0<br>2.7<br>2.8<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7<br>28.2<br>20.7<br>24.9                                         | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>147<br>165<br>38<br>325                                           | 6<br>6<br>9<br>8<br>11<br>1774<br>8<br>8<br>8<br>8<br>8<br>14<br>25<br>14<br>25<br>14<br>25<br>14<br>31<br>25<br>14<br>31<br>25<br>14<br>31<br>25<br>14<br>31<br>25<br>14<br>25<br>25<br>25<br>25<br>25<br>25<br>29<br>29 | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>3<br>57<br>13<br>78<br>7<br>7<br>24<br>5<br>15<br>5<br>75           | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>2.8<br>3.5<br>6.3<br>3.0<br>1.3<br>1.3                      | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5<br>228.1<br>475.2<br>75.4                           |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275<br>280<br>297<br>346<br>350               | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-02-15 07:24:16.420<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160<br>2003-10-24 01:52:41.160<br>2003-10-24 01:52:41.160<br>2003-10-12 16:06:42.530<br>2006-01-10 23:41:06.140                            | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7<br>3.0<br>2.7<br>2.8<br>2.5<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7<br>28.2<br>20.7<br>24.9<br>19.5                                 | 71<br>74<br>72<br>75<br>249<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>147<br>165<br>38<br>325<br>360                                                | -6<br>-6<br>-9<br>-9<br>-8<br>-11<br>174<br>-8<br>-8<br>-8<br>-8<br>-3<br>148<br>-3<br>158<br>-25<br>-18<br>161<br>-25<br>-14<br>-31<br>95<br>-68<br>-133                                                                 | 43<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>57<br>13<br>78<br>7<br>24<br>5<br>51<br>5<br>1                      | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>6.3<br>3.0<br>1.3<br>1.3<br>1.3                             | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5<br>228.1<br>475.2<br>75.4<br>331.6                  |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275<br>280<br>297<br>346<br>350<br>390        | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160<br>2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2005-10-12 16:06:42.530<br>2006-01-10 23:41:06.140<br>2006-08-08 05:04:00.050 | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.6<br>3.2<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.3<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.3<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.6<br>3.2<br>2.7<br>2.6<br>3.2<br>2.6<br>3.2<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>3.0<br>3.0<br>2.7<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7<br>28.2<br>20.7<br>24.9<br>19.5<br>29.0                         | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>147<br>165<br>38<br>325<br>360<br>165                             | 6<br>-6<br>-9<br>-9<br>-8<br>-11<br>174<br>-8<br>-8<br>-8<br>-8<br>-18<br>148<br>3<br>-55<br>-18<br>161<br>-25<br>-18<br>161<br>-25<br>-14<br>-31<br>95<br>95<br>168<br>133<br>-32                                        | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>57<br>13<br>78<br>7<br>24<br>5<br>15<br>75<br>51<br>8               | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>6.3<br>3.0<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3               | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5<br>228.1<br>475.2<br>75.4<br>331.6<br>731.8         |
| ZLV2    | 297<br>411<br>478<br>538<br>547<br>566<br>58<br>107<br>115<br>154<br>166<br>175<br>273<br>275<br>280<br>297<br>346<br>350<br>390<br>391 | 2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2007-02-17 01:41:14.010<br>2008-10-30 05:54:29.080<br>2009-04-14 21:05:25.880<br>2009-05-08 05:23:11.950<br>2009-11-26 12:54:14.030<br>1996-12-28 18:16:56.580<br>1998-02-15 07:24:16.420<br>1998-07-14 12:12:02.230<br>1999-12-31 11:00:55.330<br>2000-06-12 15:48:23.010<br>2000-10-25 18:10:34.790<br>2003-09-27 13:57:54.150<br>2003-10-24 01:52:41.160<br>2003-11-16 20:04:11.480<br>2004-06-21 23:32:02.760<br>2005-10-12 16:06:42.530<br>2006-01-10 23:41:06.140<br>2006-08-08 05:04:00.050 | 2.7<br>2.8<br>2.6<br>3.2<br>2.6<br>3.0<br>2.8<br>2.7<br>2.6<br>3.3<br>2.8<br>2.7<br>3.0<br>2.7<br>3.0<br>2.7<br>2.8<br>5.2<br>5<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.2<br>20.7<br>15.4<br>27.3<br>28.6<br>29.2<br>48.5<br>34.7<br>29.4<br>35.3<br>34.8<br>27.6<br>35.3<br>28.7<br>22.7<br>28.2<br>20.7<br>28.2<br>20.7<br>24.9<br>19.5<br>29.0<br>28.8 | 70<br>71<br>74<br>72<br>75<br>249<br>72<br>72<br>345<br>130<br>334<br>158<br>151<br>331<br>158<br>151<br>331<br>158<br>147<br>165<br>38<br>325<br>360<br>165<br>166 | 6<br>-6<br>-9<br>-9<br>-8<br>-11<br>174<br>-8<br>-8<br>-8<br>-8<br>-18<br>-14<br>-25<br>-18<br>-161<br>-25<br>-14<br>-31<br>95<br>-168<br>-133<br>-32<br>-32<br>-32                                                       | 45<br>7<br>27<br>14<br>16<br>70<br>30<br>48<br>7<br>1<br>3<br>57<br>13<br>3<br>57<br>13<br>7<br>8<br>7<br>24<br>5<br>15<br>51<br>51<br>8<br>9 | 17.1<br>27.4<br>2.7<br>3.5<br>8.9<br>5.7<br>5.9<br>5.3<br>13.6<br>3.4<br>3.9<br>3.5<br>2.8<br>3.5<br>6.3<br>3.0<br>1.3<br>1.3<br>1.3<br>1.3<br>1.9<br>1.8<br>2.9 | 67.6<br>314.4<br>208.6<br>173.4<br>75.1<br>68.9<br>80.3<br>135.6<br>67.2<br>108.4<br>60.7<br>101.6<br>172.1<br>68.0<br>457.5<br>228.1<br>475.2<br>75.4<br>331.6<br>731.8<br>42.2 |

| Station | ID  | Origin time             |     | d [km] | θ[°] | $\theta_{diff}$ [°] | Offset [ $^{\circ}$ ] | Linearity | SNR    |
|---------|-----|-------------------------|-----|--------|------|---------------------|-----------------------|-----------|--------|
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 27.3   | 148  | -15                 | 1                     | 15.9      | 475.3  |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 28.6   | 164  | -31                 | 8                     | 1.6       | 92.6   |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6 | 25.4   | 137  | -4                  | 8                     | 16.7      | 151.0  |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0 | 29.2   | 144  | -11                 | 7                     | 10.4      | 193.8  |
|         | 566 | 2009-11-26 12:54:14.030 | 2.8 | 48.5   | 54   | 78                  | 15                    | 1.5       | 214.6  |
| ZLV3    | 25  | 1996-03-12 12:13:48.170 | 2.6 | 35.0   | 266  | -44                 | 5                     | 3.1       | 27.0   |
|         | 103 | 1998-01-28 21:33:03.840 | 2.7 | 34.8   | 234  | -12                 | 2                     | 1.9       | 77.1   |
|         | 107 | 1998-02-15 07:24:16.420 | 2.6 | 29.4   | 223  | 0                   | 12                    | 10.9      | 81.9   |
|         | 115 | 1998-07-14 12:12:02.230 | 3.3 | 35.3   | 243  | -21                 | 3                     | 6.2       | 96.7   |
|         | 154 | 1999-12-31 11:00:55.330 | 2.8 | 34.8   | 245  | -23                 | 6                     | 6.1       | 68.8   |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6 | 27.6   | 217  | 4                   | 9                     | 8.0       | 98.8   |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 28.7   | 218  | 3                   | 1                     | 79.1      | 62.5   |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0 | 22.7   | 210  | 11                  | 1                     | 13.8      | 551.2  |
|         | 280 | 2003-11-16 20:04:11.480 | 2.7 | 28.2   | 218  | 4                   | 0                     | 221.7     | 233.6  |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 20.7   | 235  | -12                 | 13                    | 17.9      | 423.5  |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5 | 24.9   | 47   | 175                 | 72                    | 2.2       | 56.0   |
|         | 350 | 2006-01-10 23:41:06.140 | 2.6 | 19.5   | 234  | -11                 | 21                    | 6.0       | 312.0  |
|         | 390 | 2006-08-08 05:04:00.050 | 3.5 | 29.0   | 220  | 1                   | 8                     | 91.5      | 478.6  |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5 | 28.8   | 218  | 4                   | 10                    | 15.8      | 35.4   |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 15.4   | 225  | -3                  | 7                     | 10.4      | 869.4  |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 27.3   | 221  | 0                   | 1                     | 42.1      | 392.6  |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 28.6   | 219  | 2                   | 0                     | 183.3     | 100.2  |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6 | 25.4   | 209  | 12                  | 2                     | 5.9       | 101.0  |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0 | 29.2   | 219  | 2                   | 0                     | 31.8      | 119.2  |
|         | 566 | 2009-11-26 12:54:14.030 | 2.8 | 48.5   | 232  | -10                 | 65                    | 2.3       | 157.7  |
| ZLV4    | 103 | 1998-01-28 21:33:03.840 | 2.7 | 34.8   | 154  | -24                 | 2                     | 2.8       | 75.5   |
|         | 107 | 1998-02-15 07:24:16.420 | 2.6 | 29.4   | 122  | 8                   | 1                     | 23.3      | 96.8   |
|         | 115 | 1998-07-14 12:12:02.230 | 3.3 | 35.3   | 151  | -21                 | 2                     | 4.2       | 126.6  |
|         | 154 | 1999-12-31 11:00:55.330 | 2.8 | 34.8   | 137  | -7                  | 8                     | 2.4       | 60.3   |
|         | 166 | 2000-06-12 15:48:23.010 | 2.6 | 27.6   | 124  | 5                   | 1                     | 19.8      | 58.1   |
|         | 175 | 2000-10-25 18:10:34.790 | 3.2 | 35.3   | 149  | -19                 | 2                     | 1.9       | 171.2  |
|         | 273 | 2003-09-27 13:57:54.150 | 2.7 | 28.7   | 125  | 4                   | 1                     | 70.8      | 91.2   |
|         | 275 | 2003-10-24 01:52:41.160 | 3.0 | 22.7   | 124  | 5                   | 0                     | 102.8     | 697.8  |
| х       | 280 | 2003-11-16 20:04:11.480 | 2.7 | 28.2   | 126  | 4                   | 1                     | 133.0     | 252.5  |
|         | 297 | 2004-06-21 23:32:02.760 | 2.8 | 20.7   | 140  | -9                  | 3                     | 5.7       | 502.5  |
|         | 346 | 2005-10-12 16:06:42.530 | 2.5 | 24.9   | 121  | 9                   | 10                    | 5.3       | 56.6   |
|         | 350 | 2006-01-10 23:41:06.140 | 2.6 | 19.5   | 137  | -6                  | 18                    | 3.3       | 485.2  |
|         | 390 | 2006-08-08 05:04:00.050 | 3.5 | 29.0   | 127  | 2                   | 3                     | 71.0      | 562.8  |
|         | 391 | 2006-08-08 09:49:23.380 | 2.5 | 28.8   | 132  | -1                  | 4                     | 9.4       | 36.4   |
|         | 411 | 2007-02-17 01:41:14.010 | 2.6 | 15.4   | 121  | 8                   | 3                     | 64.3      | 1150.0 |
|         | 478 | 2008-10-30 05:54:29.080 | 3.2 | 27.3   | 126  | 3                   | 0                     | 110.9     | 364.2  |
|         | 538 | 2009-04-14 21:05:25.880 | 2.6 | 28.6   | 129  | 0                   | 1                     | 21.9      | 105.5  |
|         | 540 | 2009-04-16 17:12:15.910 | 2.6 | 25.4   | 118  | 11                  | 4                     | 5.0       | 109.5  |
|         | 547 | 2009-05-08 05:23:11.950 | 3.0 | 29.2   | 128  | 1                   | 0                     | 82.5      | 145.8  |
|         | 566 | 2009-11-26 12:54:14.030 | 2.8 | 48.5   | 135  | -5                  | 58                    | 7.8       | 150.2  |

![](_page_102_Figure_3.jpeg)

FIGURE B.8: Orientation results for all levels of station ENM. The number of measurements contributing to the mean solution (blue line) is indicated in parentheses. Angles stored in the StationXML file are represented by the two black lines. Individual results are shown as circles with colour depending on the linearity of the particle motion in the horizontal plane (see e.g. Fig. 3.13) and size being proportional to event magnitude, plotted as function of the event-station distance in km (radial axis). Blue-shaded areas symbolise standard deviations.

![](_page_103_Picture_0.jpeg)

![](_page_103_Figure_2.jpeg)

FIGURE B.9: Same as Fig. B.8 for ENV borehole station.

![](_page_103_Figure_4.jpeg)

FIGURE B.10: Same as Fig. B.8 for HWF borehole station.

![](_page_103_Figure_6.jpeg)

FIGURE B.11: Same as Fig. B.8 for OTL borehole station.

![](_page_103_Figure_8.jpeg)

FIGURE B.12: Same as Fig. B.8 for VBG borehole station.

![](_page_104_Figure_2.jpeg)

FIGURE B.13: Same as Fig. B.8 for VLW borehole station.

![](_page_104_Figure_4.jpeg)

FIGURE B.14: Same as Fig. B.8 for WDB borehole station.

![](_page_104_Figure_6.jpeg)

FIGURE B.15: Same as Fig. B.8 for WMH borehole station.

![](_page_104_Figure_8.jpeg)

FIGURE B.16: Same as Fig. B.8 for ZL2 borehole station.

![](_page_105_Figure_2.jpeg)

FIGURE B.17: Same as Fig. B.8 for ZLV borehole station.

**Examples** 

![](_page_105_Figure_5.jpeg)

FIGURE B.18: Waveforms and hodograms for radial, vertical, pseudo-north and pseudo-east component of an event recorded on ENM1. On the bottom right plot, the blue lines are the results of our orientation analysis; the black lines are the angles stored in the StationXML file and the red line points towards the principal direction of the particle motion in the horizontal plane. The linearity, defined as the ratio of the largest over the smallest eigenvalue, is indicated on the top right corner.

![](_page_106_Figure_2.jpeg)

FIGURE B.19: Same as Fig. B.18 for ENV2.

![](_page_106_Figure_4.jpeg)

FIGURE B.20: Same as Fig. B.18 for FSW5.

![](_page_107_Figure_2.jpeg)

FIGURE B.21: Same as Fig. B.18 for HWF4.

![](_page_107_Figure_4.jpeg)

![](_page_107_Figure_5.jpeg)


FIGURE B.23: Same as Fig. B.18 for VBG3.







FIGURE B.25: Same as Fig. B.18 for WDB4.



FIGURE B.26: Same as Fig. B.18 for WMH4.



FIGURE B.27: Same as Fig. B.18 for ZL23.







FIGURE B.29: Same as Fig. B.18 for FSW1. In this example, our results differ by about  $180^{\circ}$  from the XML file angles.

# **B.5** Borehole overview of malfunctioning components

The figures shown in this section are based on the Appendices F and G of Dost et al. (2022). Grey colour indicates functional components, while red indicates potentially erroneous amplitudes. Red crosses represent specific events, which are reported as suspicious throughout the same report (section 5.2.4 on borehole amplitudes in Dost et al., 2022). Orange lines correspond to reported damages to the DCF receiver (Appendix F in Dost et al., 2022).





### FIGURE B.30: Borehole station ENM









FIGURE B.32: Borehole station FSW



















### FIGURE B.36: Borehole station VBG









### FIGURE B.38: Borehole station WDB









# FIGURE B.40: Borehole station ZL2



# FIGURE B.41: Borehole station ZLV

ZLV

## B.6 Borehole maximum amplitudes as a function of distance at all stations and levels

Each figure shows the absolute maximum amplitude measured on each individual record (by station, level and component).

Data were instrument-corrected, rotated into the ray coordinate system (R-T-Z) and bandpass-filtered in the frequency range from 2 to 50 Hz.

Circles are coloured by event origin time and their size is proportional to event magnitude.

In addition, saturated records and malfunctioning components as reported in section 5.2.4 and appendices F & G of Dost et al. (2022) are highlighted as red- and white-bordered circles, respectively.

Events belonging to files containing multiple events are symbolised by white crosses. Since the extraction of the maximum amplitude was performed automatically, the maximum amplitude corresponds to the one measured for the largest event within the file.



FIGURE B.42: Borehole station ENM: columns correspond to radial, transversal and vertical component, rows to levels 1 to 4



FIGURE B.43: Borehole station ENV: columns correspond to radial, transversal and vertical component, rows to levels 1 to 4



FIGURE B.44: Borehole station FSW: columns correspond to radial, transversal and vertical component, rows to levels 1 to 5



FIGURE B.45: Borehole station HWF: columns correspond to radial, transversal and vertical component, rows to levels 0 to 4



FIGURE B.46: Borehole station OTL: columns correspond to radial, transversal and vertical component, rows to levels 1 to 4



FIGURE B.47: Borehole station PPB: columns correspond to radial, transversal and vertical component, rows to levels 0 to 4



FIGURE B.48: Borehole station VBG: columns correspond to radial, transversal and vertical component, rows to levels 1 to 4



FIGURE B.49: Borehole station VLW: columns correspond to radial, transversal and vertical component, rows to levels 0 to 4



FIGURE B.50: Borehole station WDB: columns correspond to radial, transversal and vertical component, rows to levels 0 to 4



FIGURE B.51: Borehole station WMH: columns correspond to radial, transversal and vertical component, rows to levels 1 to 4



FIGURE B.52: Borehole station ZL2: columns correspond to radial, transversal and vertical component, rows to levels 1 to 4



FIGURE B.53: Borehole station ZLV: columns correspond to radial, transversal and vertical component, rows to levels 0 to 4



FIGURE B.54: Maximum amplitudes in µm/s as a function of distance for all records on (a) the radial,
(b) the transverse and (c) the vertical components after saturated and malfunctioning records were removed.

### **B.7** Borehole RMS amplitudes as a function of time at all stations and levels

Each figure shows the RMS amplitudes measured on each individual record (by station, level and component) over time.

Data were instrument-corrected and bandpass-filtered in the frequency range from 2 to 50 Hz. Data are not rotated, therefore we refer to the horizontal components as pseudo-North and pseudo-East.

Circles are coloured by event origin time and their size is proportional to the noise window length, which was automatically selected from the start of the record to 0.1 s before the theoretical P-wave arrival time.

In addition, saturated records and malfunctioning components as reported in section 5.2.4 and appendices F & G of Dost et al. (2022) are highlighted as red- and white-bordered circles, respectively.

Events belonging to files containing multiple events are symbolised by white crosses. Since the extraction of the RMS amplitude was performed automatically, the RMS amplitude of the second event in the file will fall within the time span of the first event. For that reason, it might be biased and abnormally high.

Horizontal dashed lines represent the 95% percentile of RMS amplitudes, the threshold above which outliers can be defined.

#### **B.7.1** Results



FIGURE B.55: Borehole station ENM: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 4



FIGURE B.56: Borehole station ENV: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 4



FIGURE B.57: Borehole station FSW: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 5



FIGURE B.58: Borehole station HWF: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 0 to 4



FIGURE B.59: Borehole station OTL: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 4



FIGURE B.60: Borehole station PPB: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 0 to 4



FIGURE B.61: Borehole station VBG: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 4



FIGURE B.62: Borehole station VLW: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 0 to 4



FIGURE B.63: Borehole station WDB: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 0 to 4



FIGURE B.64: Borehole station WMH: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 4



FIGURE B.65: Borehole station ZL2: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 1 to 4



FIGURE B.66: Borehole station ZLV: columns correspond to pseudo-North, pseudo-East and vertical components, rows to levels 0 to 4
## **B.7.2 Examples of outliers**



FIGURE B.67: Three-component records of the 19<sup>th</sup> February, 2008 event recorded on VLW. Time on the x-axis represents seconds from the record start time. The blue-shaded area corresponds to the window used to compute the RMS amplitude and includes a very strong signal, which occurs before the event origin time. Since its amplitude increases on shallower geophones, it suggests that the signal originates from the surface.



FIGURE B.68: Three-component waveform records of the 16<sup>th</sup> March, 1996 event recorded on ENM4. The blue-shaded area represents the window within which the RMS amplitude has been measured.



FIGURE B.69: Three-component waveform records of the 22<sup>nd</sup> June, 2005 event recorded on FSW1. The blue-shaded area represents the window within which the RMS amplitude has been measured.



FIGURE B.70: Three-component waveform records of the 13<sup>th</sup> April, 2007 event recorded on HWF2. The blue-shaded area represents the window within which the RMS amplitude has been measured.



FIGURE B.71: Three-component waveform records of the 9<sup>th</sup> September, 2001 event recorded on HWF4. The blue-shaded area represents the window within which the RMS amplitude has been measured.

## **B.7.3 Results without outliers**



FIGURE B.72: RMS amplitudes in μm/s as a function of time for all records on the (a) pseudo-North,
(b) pseudo-East and (c) vertical components. Circles are coloured by event origin time and their size is scaled by RMS window lengths. Outliers were removed.



FIGURE B.73: ENM - outliers removed



FIGURE B.74: ENV - outliers removed



FIGURE B.75: FSW - outliers removed



FIGURE B.76: HWF - outliers removed



FIGURE B.77: VBG - outliers removed



FIGURE B.78: VLW - outliers removed



FIGURE B.79: WDB - outliers removed



FIGURE B.80: ZL2 - outliers removed



FIGURE B.81: ZLV - outliers removed



FIGURE B.82: FSW - unfiltered data - outliers removed. To be compared to Fig. B.75.



FIGURE B.83: Two examples of records where the noise level on the horizontal components of ENV4 is significantly higher than on the vertical component. The blue-shaded area represents the window that was used to compute the RMS amplitude.



FIGURE B.84: Two examples of records for which the noise level on all components of FSW5 is significantly higher after 2005. The blue-shaded area represents the window that was used to compute the RMS amplitude.



(a) Example of lower amplitude on the East component of VBG1.

(b) Example of lower amplitude on the vertical component of VBG4.

FIGURE B.85: Blue-shaded areas represent the window used to compute RMS amplitudes.



FIGURE B.86: Illustration of malfunctioning components of VLW0 as of 2008. Records of the same event on (a) VLW0 and (b) VLW1: the event is not visible on VLW0. Blue-shaded areas represent the window used to compute RMS amplitudes.



FIGURE B.87: Example of abnormally high amplitudes on the horizontal components of VLW3 in the period 2001-2005. The blue-shaded area represents the window in which the RMS amplitude was measured.



(a) Example of malfunctioning vertical component of WDB3 in 2004.



(b) Example of malfunctioning WDB0 sensor in 2010 (all components affected).

FIGURE B.88: Illustration of malfunctioning components of WDB. Blue-shaded areas represent the window used to compute RMS amplitudes.



FIGURE B.89: Three-component waveform records of the 11<sup>th</sup> June, 2000 event on ZL24. The blueshaded area represents the window in which the RMS amplitude was measured. The vertical component is clearly malfunctioning.



(a) Example of malfunctioning vertical component of ZLV0 in 2003.



(b) Example of malfunctioning vertical and East components of ZLV0 in 2008.

FIGURE B.90: Illustration of malfunctioning components of WDB. Blue-shaded areas represent the window used to compute RMS amplitudes.



FIGURE B.91: Example of abnormally high amplitudes on the horizontal components of ZLV1 in the period 2005-2007. The blue-shaded area represents the window within which the RMS amplitude has been measured.

## **B.8 Borehole timing**

TABLE B.14: List of 161 borehole records with timing irregularities exceeding one sample. Second and minute flags express the number of samples differing from the theoretical second and minute marks, respectively. The flag on spurious pulses is a boolean indicating whether irregular pulses were detected.

| Event time          | Station | Second flag | Minute flag | Spurious |
|---------------------|---------|-------------|-------------|----------|
| 1996-02-29 08:07:34 | ZLV     | 7           | -8          | True     |
| 1996-03-06 09:20:50 | ZLV     | 24          | 25          | True     |
| 1996-03-12 18:34:12 | ZLV     | 2           | -3          | True     |
| 1996-03-16 04:16:32 | ENM     | 0           | 119         | True     |
| 1996-06-07 04:20:56 | ENV     | 0           | 2           | True     |
| 1996-06-16 02:53:27 | VBG     | 14          | -15         | True     |
| 1996-08-04 00:42:17 | VBG     | 4           | 5           | True     |
| 1996-08-04 00:42:17 | HWF     | 13          | -14         | True     |
| 1996-08-06 13:38:27 | HWF     | 3           | -4          | True     |
| 1996-08-06 13:38:27 | ZLV     | 3           | 4           | True     |
| 1996-11-17 04:59:52 | ENV     | 0           | 2038        | True     |
| 1996-12-28 00:54:08 | ZLV     | 2           | -3          | True     |
| 1996-12-28 00:54:08 | ZL2     | 48          | 49          | True     |
| 1997-01-08 01:20:54 | ZL2     | 3           | -4          | True     |
| 1997-03-08 14:29:04 | ZL2     | 10          | -11         | True     |
| 1997-04-01 00:34:19 | HWF     | 8           | -9          | True     |
| 1997-04-01 00:34:19 | FSW     | 0           | 2           | True     |
| 1997-05-04 02:42:39 | WDB     | 19          | -20         | True     |
| 1997-05-04 02:42:39 | ZLV     | 2           | -3          | True     |
| 1997-05-04 04:29:09 | WDB     | 24          | 25          | True     |
| 1997-06-19 23:19:25 | WDB     | 6           | 7           | True     |
| 1997-06-19 23:19:25 | ZL2     | 3           | -4          | True     |
| 1997-08-18 04:42:28 | ENM     | 0           | 7199        | True     |
| 1997-08-18 04:42:28 | HWF     | 44          | -45         | True     |
| 1997-08-18 05:17:32 | VBG     | -4          | 3           | True     |
| 1997-08-23 00:01:56 | ZL2     | 0           | 239         | True     |
| 1997-08-23 19:39:35 | WDB     | 0           | 2           | True     |
| 1998-02-05 21:11:49 | ZLV     | 2           | -3          | True     |
|                     |         |             |             |          |

Continued on next page

| Event time          | Station | Second flag | Minute flag | Spurious |
|---------------------|---------|-------------|-------------|----------|
| 1998-04-19 08:00:12 | ZL2     | 2           | 3           | True     |
| 1998-04-19 15:32:35 | ZLV     | 6           | -7          | True     |
| 1998-04-19 15:32:35 | ZL2     | 31          | -32         | True     |
| 1998-04-30 01:08:41 | ZLV     | 2           | -3          | True     |
| 1998-05-30 09:43:15 | E NIV   | 0           | 2           | True     |
| 1998-07-14 12:12:02 | WDB     | 2           | -30         | True     |
| 1998-11-01 17:48:29 | FNV     | 3           | -30         | True     |
| 1999-08-10 23:24:18 | WDB     | 8           | 9           | True     |
| 2000-05-16 01:11:14 | HWF     | 3           | -4          | False    |
| 2000-06-09 17:03:47 | HWF     | 3           | -4          | True     |
| 2000-07-06 23:09:56 | HWF     | 4           | 5           | True     |
| 2000-07-10 15:05:49 | HWF     | 10          | -11         | True     |
| 2000-07-13 08:41:52 | HWF     | 34          | -35         | True     |
| 2000-09-22 20:52:06 | HWF     | 20          | 21          | True     |
| 2000-09-23 03:47:47 | HWF     | 12          | 13          | True     |
| 2000-10-25 18:10:34 | HWF     | 26          | -27         | True     |
| 2001-06-21 03:50:49 | ENM     | 0           | 2           | True     |
| 2001-08-07 17:09:01 |         | -34         | -10         | True     |
| 2001-09-09 00:38:12 | VBG     | 5           | -10         | True     |
| 2002-05-22 13:38:13 | ENV     | 0           | 2           | True     |
| 2002-08-29 21:13:22 | WDB     | 2           | -3          | True     |
| 2002-08-29 21:13:22 | ZLV     | 0           | 2           | True     |
| 2002-09-05 00:00:21 | ENV     | 0           | 2           | True     |
| 2002-09-06 06:07:05 | WDB     | 21          | -22         | True     |
| 2003-02-11 19:29:49 | VLW     | 0           | 2           | True     |
| 2003-08-20 08:46:14 | ENV     | -59         | 62          | True     |
| 2003-08-20 08:46:14 | WDB     | 8           | -9          | False    |
| 2003-08-25 04:24:55 | WDB     | 11          | -12         | True     |
| 2003-09-22 17:50:11 | ENV     | 31          | 32          | True     |
| 2003-09-27 13:57:54 | ENIM    | 31          | -32         | True     |
| 2003-10-24 01.32.41 | WDB     | 20          | -4          | True     |
| 2003-11-10 02:40:55 | ENM     | 2           | -3          | True     |
| 2003-11-10 02:40:55 | ENV     | 2           | -3          | True     |
| 2003-12-26 10:09:58 | ENM     | 26          | -27         | True     |
| 2003-12-29 13:09:59 | ENM     | 4           | -5          | True     |
| 2004-01-24 13:53:44 | ENM     | 12          | 13          | True     |
| 2004-01-30 11:47:40 | ENM     | 2           | -3          | True     |
| 2004-03-21 17:05:44 | ENM     | 18          | -19         | True     |
| 2004-03-26 02:32:45 | ENM     | 34          | -35         | True     |
| 2004-04-30 22:12:43 | ENM     | 56          | -57         | True     |
| 2004-08-21 01:06:32 | ENM     | 5           | 6           | True     |
| 2004-08-21 01:06:32 |         | 1           | 2           | True     |
| 2004-08-21 01:00:32 | ENIM    | 2           | -3          | Ealso    |
| 2004-09-22 12:44:55 | FSW     | 14          | -15         | True     |
| 2004-10-31 17:27:21 | ENM     | 9           | -10         | True     |
| 2004-11-13 12:15:57 | ENM     | 11          | -12         | True     |
| 2004-11-24 18:18:57 | ENM     | 0           | 2           | True     |
| 2004-11-25 14:25:54 | ENM     | 2           | -3          | True     |
| 2004-11-25 14:25:54 | FSW     | 2           | -3          | True     |
| 2004-11-26 06:58:01 | ENM     | 2           | -3          | True     |
| 2004-11-26 06:58:01 | FSW     | 5           | -6          | True     |
| 2004-12-16 21:14:30 | ENM     | 3           | -4          | True     |
| 2005-01-17 00:00:55 | ZLV     | 56          | 1023        | False    |
| 2005-01-17 00:00:55 | F2M     | 30          | -31         | True     |
| 2003-01-17 00:00:55 | EC/V/   | -3          | 25          | True     |
| 2005-02-16 10:46:17 | ENM     | 19          | -20         | True     |
| 2005-02-16 10:46:17 | FSW     | 37          | -38         | True     |
| 2005-02-18 11:26:29 | VLW     | 0           | 2           | True     |
| 2005-02-18 11:26:29 | ENM     | 12          | 13          | True     |
| 2005-02-18 11:26:29 | FSW     | 45          | 46          | True     |
| 2005-02-18 12:55:46 | ENM     | 17          | -18         | True     |
| 2005-02-18 12:55:46 | FSW     | 54          | -55         | True     |
| 2005-02-18 18:49:25 | FSW     | 16          | -17         | True     |
| 2005-02-18 22:05:52 | FSW     | 16          | -17         | True     |
| 2005-02-18 22:05:52 | ENM     | 2           | -3          | True     |
| 2005-03-08 23:00:58 | ENM     | 22          | -23         | True     |
| 2003-03-08 23:00:58 | EC/V/   | -3<br>2     | 118         | True     |
| 2005-03-21 10:58:33 | FSW     | 42          | -4          | True     |
| 2005-03-21 23:21:19 | FSW     | 4           | -45         | True     |
| 2005-04-02 23:21:08 | ENM     | 15          | -16         | True     |
| 2005-04-02 23:21:08 | FSW     | 36          | -37         | True     |
| 2005-06-22 16:02:02 | ENV     | 20          | -21         | True     |

Continued on next page

| Event time          | Station | Second flag | Minute flag | Spurious |
|---------------------|---------|-------------|-------------|----------|
| 2006-01-02 12:00:45 | FSW     | 4           | 5           | True     |
| 2006-01-10 23:41:06 | ENV     | 0           | 2           | True     |
| 2006-01-20 20:22:50 | FSW     | 2           | -3          | True     |
| 2006-01-23 11:17:39 | FSW     | 2           | -3          | True     |
| 2006-01-28 03:00:42 | FSW     | 0           | 2           | True     |
| 2006-03-04 04:32:33 | FSW     | 2           | -3          | True     |
| 2006-08-26 22:41:18 | VBG     | 13          | -14         | True     |
| 2006-10-15 20:18:00 | FSW     | 2           | -3          | False    |
| 2007-02-04 04:47:35 | FSW     | 0           | 2           | True     |
| 2007-02-17 01:41:14 | FSW     | 43          | 44          | True     |
| 2007-03-03 06:43:33 | FSW     | 9           | 10          | True     |
| 2007-03-21 23:04:36 | FSW     | 35          | 36          | True     |
| 2007-06-09 20:07:33 | VLW     | 40          | -41         | False    |
| 2007-06-09 20:07:33 | WDB     | 5           | -6          | True     |
| 2007-06-09 20:07:33 | ENM     | 11          | -12         | True     |
| 2007-06-09 20:07:33 | ENV     | 4           | -5          | True     |
| 2007-06-10 17:27:40 | ENV     | 2           | -3          | True     |
| 2007-06-10 17:27:40 | VLW     | 2           | -3          | True     |
| 2007-06-10 17:27:40 | WDB     | 2           | -3          | True     |
| 2007-06-10 17:27:40 | ZLV     | 3           | -4          | True     |
| 2007-06-23 02:01:45 | FSW     | 0           | 2           | True     |
| 2007-11-13 10:26:05 | ESW     | 2           | -3          | True     |
| 2008-04-07 04:32:22 | ESW     | 9           | 10          | True     |
| 2008-05-18 13:23:46 | FSW     | 0           | 2           | True     |
| 2008-10-29 16:36:21 | ENM     | 2           | 3           | True     |
| 2008-10-30 05:54:29 | ENM     | 5           | -6          | True     |
| 2008-11-07 16:40:01 | VBG     | 0           | 2           | True     |
| 2008-11-07 16:40:01 | FSW     | 0           | 2           | True     |
| 2008-12-15 20:41:17 | FNM     | 5           | -6          | True     |
| 2009-01-01 08:34:39 | FNM     | 7           | -8          | True     |
| 2009-01-01 08:34:39 | FSW     | 2           | -3          | True     |
| 2009-01-01 09:35:46 | FNM     | 10          | 11          | True     |
| 2009-01-08 01:17:01 | FNM     | 2           | -3          | True     |
| 2009-01-15 12:41:13 | FNM     | - 16        | -17         | True     |
| 2009-01-15 12:41:13 | ESW     | 48          | 49          | True     |
| 2009-02-03 06:53:52 | FSW     | 0           | 2           | True     |
| 2009-02-04 12:23:50 | FSW     | 49          | 50          | True     |
| 2009-02-04 12:23:50 | ENM     | 10          | -11         | True     |
| 2009-02-05 11:56:12 | ENM     | 15          | -16         | True     |
| 2009-02-16 09:24:55 | FNM     | 11          | -12         | True     |
| 2009-02-16 09:24:55 | FSW     | 0           | 2           | True     |
| 2009-02-26 03:03:15 | FSW     | 0           | 2           | True     |
| 2009-03-13 14:33:32 | FNM     | 40          | 41          | True     |
| 2009-03-14 15:32:16 | ENV     | -10         | 4           | True     |
| 2009-03-14 15:32:16 | ENV     | 3           | 4           | True     |
| 2009-03-27 02:51:28 | ENM     | 20          | 21          | True     |
| 2009-03-27 02:51:28 | ESW/    | 20          | 21          | True     |
| 2009-04-16 17:12:15 | ENIM    | 38          | -30         | True     |
| 2009-07-22 00:00:00 | ESW/    | 30          | -23         | True     |
| 2009-07-22 00:00:00 | 71.V    | 5           | -6          | True     |
| 2009-11-26 12:54:14 | ENM     | 0           | -0          | True     |
| 2010-02-17 15:55:01 |         | 15          | -16         | True     |
| 2010-03-04 10-50-57 | EC/W    | 30          | -10         | True     |
| 2010-04-03 11.50.56 | EC/W    | 25          | -40         | True     |
| 2010-04-25 00:46:00 | FSW/    | 20          | -27         | True     |
| 2010-04-25 13:13:17 | FSW     | 27          | -5          | True     |
| 2010-04-25 15.15.17 | 1311    | 21          | 20          | nue      |



FIGURE B.92: Vertical component waveforms for the 21<sup>st</sup> July, 1995 event recorded on the 4<sup>th</sup> borehole level sorted according to the event-station distances. Data have been instrumentcorrected and filtered between 2 and 50 Hz. The event origin time is symbolised by the vertical orange dashed line. P-wave arrival times (if available) are plotted as vertical blue bars. Traces are coloured following the colour code described in the text. The DCF signal corresponding to station WDB4 is shown in Fig. 3.17e.





FIGURE B.93: Same as Fig. B.92 for the 23<sup>rd</sup> August, 1997 event. The DCF signal corresponding to station ZL2 is shown in Fig. 3.17c.



| Report Number:       | Confidential: X                                             | External: X | NORSAR Project |  |
|----------------------|-------------------------------------------------------------|-------------|----------------|--|
|                      |                                                             |             | No.:           |  |
| 21-002               | Unlimited:                                                  | Internal:   | 10201          |  |
|                      |                                                             |             |                |  |
| Title:               | Quality control for the publication of offline data by KNMI |             |                |  |
|                      | (KEM-11)                                                    |             |                |  |
| Client:              | Staatstoezicht op de Mijnen, Netherlands                    |             |                |  |
|                      | ~~~                                                         |             |                |  |
| Project manager:     | 5.1.2.e                                                     |             |                |  |
|                      |                                                             |             |                |  |
| Authors/prepared by: | 5.1.2.e                                                     |             |                |  |
|                      |                                                             |             |                |  |
| Submitted to:        | Staatstoezicht op de Mijnen, Netherlands                    |             |                |  |
|                      |                                                             |             |                |  |
| Contract reference:  |                                                             |             |                |  |
| Archive reference:   |                                                             |             |                |  |
|                      |                                                             |             |                |  |
| Approved by:         | Name:                                                       | Signature:  | Date:          |  |
|                      |                                                             | 5.1.2.e     |                |  |
| Project manager:     | 5.1.2.e                                                     |             | 24.10.2022     |  |
|                      |                                                             | 5.1.2.e     |                |  |
| Quality control:     | 5.1.2.e                                                     | ,           | 24.10.2022     |  |





info@norsar.no www.norsar.no